
Perls Before Swine

Copyright © 2012 Jerry Stratton

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.1. A copy of the license is included in the section entitled
“GNU Free Documentation License”

January 11, 2012

Introduction 1
What is HTML? 1
The web site 1
What do you need? 2

Sample Data 2
Text Editor 2
Terminal or Shell 2

The basic Perl filter 3
What is it doing? 3
Indentation 4
Basic regular expressions 5
Splitting and printing 6
Comments 7

Smarter scripts 9
Capturing errors 9
Help! 10
Command-line switches 11
Case sensitivity 13
Boolean logic 14
Exiting loops ahead of time 14
Multiple options 16
Script confusion 17
The current script 18

Arrays and functions 21
Sort numerically 23
A smarter join 24
Format conversions 26
The current script 26

Custom search 29
New fields 31
Custom sort 31
Backquoting special characters 35
The current script 36

Creating files 39
Creating folders 42
Replacing text 43
Try to break it 45
Timestamps 46
The current script 48

SQL database 53
Installing from CPAN 53
Using SQLite 54
Creating tables 55
Inserting data 56
The final script 58

Web CGIs 65
Reference 69

Boolean logic 69
Comparison operators 69
File tests 70
Regular expressions 70
SilverService 71

More Information 73
GNU Free Documentation License 73

...
..

...
...

..
...

..
...
...

...
...

...
..
...

..
...

...
..

...
...

..

..
...

...
..

..
...

...
...
..

...
..

...
..

...
..
...

...
...

...
..

...
...

...
..

..
..

...
..

..
...

...
...

...

Introduction

What is Perl?
Perl is a twenty-year-old scripting language designed for managing text. It is cross-platform, running
on Linux, Unix, Mac OS X, Windows, and probably many more operating systems. It comes pre-
installed on most operating systems today, and is used for managing server tasks, formatting
documents, and filtering data. It may be the most-used programming language on the web, and has
sometimes been called the duct-tape of the Internet.

If you’re familiar with the use of duct tape, you’ll have an idea of what Perl is used for. Perl is not the
prettiest of solutions. But it works. It holds together things that would otherwise never hold
together, and is a useful tool for creating quick solutions to thorny problems. There is an elegance in
duct tape, an elegance in the solutions of the trenches. When something is broken it needs to be
fixed.

The web site
You can find the latest version of this tutorial, as well as the resources archive, at http://
www.hoboes.com/NetLife/Swine/.

Why use Perl?
If you’re a web page designer and you’re interested in programming, for example, you’re probably
already using PHP. What makes Perl useful instead of PHP? The answer is the command line. Perl
excels as filter and as glue. It is great at taking some input—usually text—and modifying it. It acts as
a great text sausage machine, grinding up text and spitting it out.

Perl also makes for a great glue tying together the various command line programs you use and
automating your use of them. Perl scripts are often used as cron jobs, running automatically at
specified times. Perl is a great way of taking what you want to give your command line program and
converting it into what the command line program expects. It is great at mediating between two or
more data sources.

If you manage a web site or a MySQL database and need regular backups and monitoring, or if you
need to regularly collect and collate data from a set of files, Perl is a great tool to know. If your task is
a series of changes—if you can think of it as a series of sieves or as an assembly line of tasks—Perl
can provide rapid automation for that task.

2—Introduction

What do you need?

Sample Data

Go to http://www.hoboes.com/NetLife/Swine/ to download the resources archive. Inside, you’ll find
a text file called “songs.txt”. We’ll be using that in this tutorial.

Text Editor

You will need a text editor, such as Smultron on the Macintosh or NoteTabPro on Windows. If you
intend to edit Perl scripts directly on a remote server, you will need familiarity with a Unix text
editor such as vi or pico.

If you’re using a GUI text editor, you’ll want to make sure that it saves your files with Unix line
endings. It usually won’t matter, but it can sometimes help track down errors.

Terminal or Shell

You will need to be able to execute your scripts. Normally you will do this from some sort of
terminal or shell application. If you are running these scripts on a remote server, you will probably
use ssh, or secure shell to get to that server. If you are running them on your local Mac OS X
workstation, you’ll use the Terminal application in your Utilities folder.

The basic Perl filter
Make sure you’ve downloaded the sample data, and then create the following text file:

#!/usr/bin/perl
while (<>) {

print;
}

Save this file as the filename show. Once you’ve saved it, make sure that it is executable by you. Go to
your command line, make sure that your are in the correct folder, and type:

chmod u+x show

On Mac OS X, you can ensure that you are in the correct folder by typing “cd” in the terminal, a
space, and then dragging the folder onto your terminal window. Press return, and you will change
directory into that folder.

Now, type:

./show show

The script should show you itself. Make sure that songs.txt is in the same directory as your script,
and type:

./show songs.txt

The show script should show you all 7,006 lines in the songs.txt file.

What is it doing?
This is about as simple of a Perl script as you can get. While it doesn’t do much yet, this is a shell
around which you can build quite a few useful scripts.

#!/usr/bin/perl

The first line is not Perl. The first line tells the operating system what language this script is written
in. More specifically, it tells the operating system which program can interpret this script.

Most shell scripts use the pound character (“#”) for comments. What it really means is that every line
that begins with a pound character is ignored by the scripting language. So Perl ignores this line
because it begins with a pound character, but the operating system or shell that you’re using knows
to send this script off to the program called /usr/bin/perl.

If your computer didn’t come with Perl pre-installed, you may have it installed in /usr/local/bin/perl
instead. Nowadays, however, most operating systems come with Perl pre-installed.

while (<>) {
}

4—The basic Perl filter

This is a while block. The part between the parentheses is an expression and the part between the two
curly brackets gets acted on for as long as that expression does not return false, empty, zero, or,
basically, as long as it returns something. We can put as much stuff as we want between those curly
brackets. Perl will repeat them, or loop through them, for as long as that expression gives it
something to work on.

The expression we have here is “<>”. This tells Perl that we want, line by line, everything in the files
that we mentioned on the command line. If we don’t mention any files on the command line, Perl
takes the standard input and gives that to us line by line instead.

For example, type:

./show

When you press return, you won’t get the command line back. Because we didn’t specify any
filenames on the command line, Perl is waiting for the standard input. Because we didn’t give it any,
it is waiting for us to type it. Type a few lines, pressing return after each line, and you’ll see the script
echo whatever you type back.

Type Control-D to exit. Then type:

echo "Now is the time for all good muskrats to come to the aid of their country" | ./show

In Unix, the vertical bar is the pipe character. Whatever is on the left gets piped through to whatever
is on the right. Echo echoes text to the screen normally, but in the above command the output from
echo gets piped through to the show script.

Finally:

print;

This command is perhaps the most common one in Perl. You use it to output something, either to
the screen or to a file.

What is it printing? Perl often makes assumptions about what you want. When we don’t give print
anything to print, Perl assumes we want to print the current line from the while loop.

So what this script does is go through every line it gets and prints it out to the screen. If you’re
familiar with Unix, we’ve just reinvented the cat command.

Indentation
In the above script, the print command is indented by one tab. Indentation makes it much easier to
read your scripts. It is much easier to see where where blocks and other blocks begin and end if those
blocks are indented. While Perl does not care about indentation, it is for all practical purposes
required that you indent; if you have blocks inside of blocks, those will be indented further.

The basic Perl filter—5

Basic regular expressions
Our current script is a filter. It takes some raw data on one end, filters it, and produces modified data
on the other end. You can also think of a filter as a sausage grinder. Our filter, however, is a very
leaky sieve: it currently lets everything through.

One of the things that Perl does very well is to filter what it gets according to a regular expression. A
regular expression is a very versatile form of searching. Change the print line to:

print if /Mellow/;

And then type:

./show songs.txt

You should see all of the songs in Donovan’s Mellow Yellow album as well as a few songs by the
Mellow Men.

In Perl, everything between two slashes, like that, is a regular expression. Since we didn’t tell Perl
what text we want the regular expression to apply to, it assumes we want to apply it to the current
line.

Any command or function followed by “if expression” will be performed only if that expression
returns something. If it returns nothing (as it will in this case when the line does not contain
Mellow), that line does not get performed. In this case, that line does not get printed.

It would be annoying to have to edit our script every time we wanted to look for some text in our
file. So we can modify the script to look on the command line for the text we want. Add one line to
the script, so that it now reads:

#!/usr/bin/perl
$searchFor = shift;
while (<>) {

print if /$searchFor/;
}

Let’s look for all mentions of Yellow in the song listing:

./show Yellow songs.txt

You should see a bunch of songs from Elton John’s Goodbye Yellow Brick Road and Donovan’s
Mellow Yellow, and a few versions of Joni Mitchell’s Big Yellow Taxi.

We’ll talk more specifically about grabbing stuff from the command line in a bit, but the shift
command grabs the first item off of a list of items. If you don’t specify a list of items, it assumes you
want the list of items that were on the command line.

On the left of shift, we have “$searchFor =”. In Perl, as in many scripting languages, the “=” is used
to assign values to variables. Variables that can contain individual values (such as the word “Yellow”
or the phrase “Voices in my head”) are called scalars in Perl, and they always begin with a dollar sign.
So this line takes the first item on the command line, shifts it out of the list of items on the
command line (so that it is no longer in that list) and assigns it to the variable called $searchFor.

6—The basic Perl filter

Let’s talk a little more about regular expressions first, though, because they are so useful. Do a search
for “Voices in my head”:

./show "Voices in my head" songs.txt

On the command line, “arguments”—the things you pass to your scripts—are separated by spaces. If
you want those spaces to be part of your argument, you need to surround the argument with quotes.
If we didn’t have the quotes around “Voices in my head”, Perl would think we wanted to search for
Voices in four files: “in”, “my”, “head”, and “songs.txt”.

However, the show script still doesn’t show anything. Try:

./show Voices songs.txt

There are several songs, and one of them is the one we’re looking for. However, it is slightly different
from what we typed: it has upper case letters where we typed lower case letters.

Rather than have to remember the exact case for every song title, we can tell Perl to ignore the case of
what we’re looking for. We can tell it to be case insensitive. It’s very simple: just add an “i” after the
final slash on the print line:

print if /$searchFor/i;

Once you’ve done that, repeat the “Voices in my head” search, and you will see the one song that
has that phrase in its title.

That’s the form for regular expressions: a slash, something to search for, another slash, and single-
letter options to modify the search. Regular expressions will get a lot more complicated than that as
you learn more Perl, but that’s the basic form that they will take.

Splitting and printing
Our search is working nicely, but it is returning a lot more information than we really need. The
data file contains quite a bit of information about our songs. It’d be nice to display it in a more
useful form. To do this, we first need to break it up into its pieces.

Looking at the data, it looks like each line consists of a song title, a duration, an artist name, an
album name, a year, some number from 0 to 100, a timestamp, its position in the tracks on the
album, and a genre. Each of these items is separated by a tab character. Replace the print line with
the following two lines:

($song, $duration, $artist, $album) = split("\t");
print "$song ($album, by $artist)\n" if /$searchFor/i;

Both of these new lines illustrate some important features of Perl, so let’s take them piece by piece:

($song, $duration, $artist, $album) = split("\t");

The “=” character means that we’re doing an assignment here. Whatever happens on the right is
going to get assigned to the stuff we have on the left. The right is the split function. This function
splits a piece of text into pieces, based on another piece of text. The text we’re splitting on is the tab
character. In Unix, the tab is often specified using backslash-t, or “\t”. The text we’re splitting is the

The basic Perl filter—7

current line, because we didn’t tell Perl what text to split. So, if the current line has eight tabs, this is
going to split it into nine pieces.

On the left, we have a list of variables. They all begin with dollar signs, so we know that they are all
expecting a single piece. Perl is going to take those pieces we generated on the right and assign them,
in order to the variables we’ve specified on the left. If there are more pieces on the right than on the
left, the extra pieces will be ignored.

So when this line is done, we should have a variable containing the song title, duration of the song,
the artist’s name, and the album’s name. We’ll ignore everything else for now.

print "$song ($album, by $artist)\n" if /$searchFor/i;

Up until now, we’ve been letting Perl print out the current line as soon as it comes through. Our
new print command actually has something to print. We’re telling print to print a piece of text
consisting of the variable $song, a space, a parentheses, the variable $album, a comma, a space, the
word “by”, another space, the variable $artist, a closing parentheses, and then a “new line” character.
Just as we saw for tabs, the new-line character has a special code beginning with a backslash: “\n”.

In Perl, most text, whether your are printing it or assigning to a variable, will be surrounded by
quotes. If you surround text with double-quotes, any variables inside that text will be “interpreted”
and replaced with their values. If you use single-quotes, Perl will not search the text for variables.

So, go ahead and try the new version of show:

./show Voices songs.txt

You should see, in a much more readable form, a skit by George Carlin, songs from Nanci Griffith’s
Other Voices, Other Rooms, and several songs that contain the word “voices”.

Comments
I mentioned earlier that the pound sign at the beginning of a line causes Perl to completely ignore
that line. This makes the pound sign a useful way of adding comments to your scripts. Comments are
very important: they help you remember what you meant by this snippet of script several months or
even years later when you look at the script again.

This script, for example, might be commented as follows:

#!/usr/bin/perl
#Search for songs in a file of the following tab-separated data:
title, duration, artist, album, year, rating, rip date, track position, genre

#the first item on the command line is what we're searching for
$searchFor = shift;
while (<>) {

#split out the song, duration, artist, and album from the current line
($song, $duration, $artist, $album) = split("\t");

#print song information if this line contains our search text

8—The basic Perl filter

print "$song ($album, by $artist)\n" if /$searchFor/i;
}

You don’t need to comment every line, but it is a good idea to comment every section. You’ll usually
want to put a comment in front of any while block, or other large block of Perl lines.

Smarter scripts

Capturing errors
It isn’t that difficult to trip up the script we’ve got so far. If you just type ./show and press return,
not only does it wait on the command line for us to type something, it doesn’t even know that we
didn’t tell it to search for anything.

Often, when you can identify command line arguments that you know are wrong, you will want to
check for those arguments, and print instruction text when someone types something unexpected.

In this case, if there is nothing to search for, the person using the script probably doesn’t know how
to use the script. We can tell them how to use it. Change the script by adding an “if” line above the
“while”, indenting everything, and then adding several lines at the bottom:

#!/usr/bin/perl
#Search for songs in a file of the following tab-separated data:
title, duration, artist, album, year, rating, rip date, track position, genre

#the first item on the command line is what we're searching for
if ($searchFor = shift) {

while (<>) {
#split out the song, duration, artist, and album
($song, $duration, $artist, $album) = split("\t");

#print the information if this line contains our search text
print "$song ($album, by $artist)\n" if /$searchFor/i;

}
} else {

help();
}

#describe how this script is used
sub help {

print "Syntax: show <search text> [song files]\n";
print "\tSearch for <search text> in the song file. If no song file is specified\n";
print "\t'show' will expect it on standard input.\n";
print "\tA song file is a tab-delimited file with:\n";
print "\ttitle, duration, artist, album, year, rating, rip date, track position, genre\n";

}

The word “if” starts a block very much like the word “while” does. Unlike while, however, an if
block is only performed once. Otherwise it is very similar. If the expression inside the parentheses of
the if line returns something, the if block is performed. Otherwise, it isn’t. Some if blocks have a
corresponding else block. If so, the else block is only performed if the if block is not performed.

10—Smarter scripts

Notice how the while block is indented further beyond the indentation of the if block. I indented it
further once I placed the if block around it. You should do so also. As your scripts become more and
more complex, failure to indent will make it practically impossible to fix errors.

The word “sub” also starts a block. Unlike while and if, however, a sub block is never performed
unless asked. The word that follows sub is the name of this subroutine. It is how we ask Perl to
perform this block. Anywhere where we have that name followed by two parentheses, Perl will
perform the sub block corresponding to that name.

In our case, if the shift does not assign something into $searchFor, we call the help subroutine. The
term subroutine is somewhat archaic. We almost never use the term routine anymore, and even
subroutine is fading from use. But that’s the origin of the word sub to mark these blocks of Perl lines.

Help!
One of the advantages of subroutines is that partitioning off some Perl lines allows us to call those
lines from multiple places without having to retype the lines. This improves the readability of our
script and also the reliability. If we make a mistake in the subroutine, we can fix it in the subroutine.

We’ve got this subroutine called help but currently the only way to see it is to do something wrong.
It might be nice to ask for the help without having to do something wrong.

When we want to alter the way a program works from the command line, we usually use switches. In
Unix, switches usually begin with a single dash if they are a single character, or double dashes if they
are a word. We’ll use words here just to make them easier to read. For example, to display the “help”
message, we might use “./show –help”.

Add the following five lines above the “first item on the command line” comment:

#if they ask for help, do it and exit
if ($ARGV[0] eq "--help") {

help();
exit;

}

Now, type:

./show --help

And you should see the help message displayed. It doesn’t matter what else you type on the
command line, as long as the first argument is “--help” you’ll get the help message and that’s it.

The important new section is the one that checks $ARGV[0]. @ARGV is the list of all command-
line arguments. In Perl, lists—often called arrays, or simple arrays—begin with the @ character. If,
however, you want an item in the array, you preface it with the dollar sign.

$ARGV[0] is the first item in the list called ARGV. Perl, like many programming languages, starts
counting from zero rather than from one. The first item in a list is item 0, not item 1. The second
item is $ARGV[1] (if there is one), and so on.

Smarter scripts—11

What we’re checking is whether or not the first argument is equal to “--help”. If it is, we call the help
subroutine and then exit. In Perl, exit will end the script completely. It doesn’t matter what else
comes after the exit line, Perl ends the script and returns you to the command line.

Finally, don’t forget to add a line to the help text describing how to get help:

print "\t--help: print this help text\n"

You’ll always want to update your help subroutine whenever you add new features to your script, or
modify existing features.

Command-line switches
So now we have a script with one command-line switch, but switches are like potato chips: once you
start, you can’t have just one. Here’s an example: we’ve currently made our script case-insensitive, so
that we don’t have to worry about remembering the exact case of the text we’re looking for. But
what if we want it to be case-sensitive? Let’s add a case switch.

To do this, though, we’re going to need to “generalize” our search for command-line switches. If we
just have a series of ifs, that will mean that either we can’t have more than one command-line switch,
or we have to put them in an exact order. That will always be too difficult to remember, especially
when we have eight or more switch possibilities.

One way of doing this is to loop through the beginning arguments as long as the argument is a
switch. Stop looping when it is no longer a switch. We can use a while block for this. Replace our
help switch’s five lines with:

#strip off the command-line switches and act on or remember them
while ($ARGV[0] =~ /^--(.+)/) {

$switch = $1;

#pull this switch off of the front of the list
shift;

#if they ask for help, do it and exit
if ($switch eq "help") {

help();
exit;

}
}

This snippet does the same thing as the previous “help-only” snippet, but it will allow us to add any
switches we want.

while ($ARGV[0] =~ /^--(.+)/) {

The “=~” is new. It is used to match a scalar variable against a regular expression. The variable goes
on the left, and the regular expression goes on the right.

And what a regular expression! Let’s take it piece by piece.

12—Smarter scripts

It begins with a caret, or “hat” character. The caret marks the beginning of a piece of text. Whatever
comes next in the regular expression will only match if it comes at the beginning of the text. So,
since the next two characters are two dashes, two dashes will only match if the two dashes are at the
beginning. This differs from our previous regular expressions, where the text we specified could
occur anywhere on the line.

After the two dashes, we have “(.+)”. The parentheses are easy: they tell Perl to remember that part of
the match, whatever it is. We’ll see what that means in a moment.

The period, or “dot”, matches a single character. It can be any character.

The plus sign matches one or more of the previous piece of the regular expression. The previous
piece is the dot, so the dot and the plus means one or more of any character.

Taken as a whole, this regular expression will match --help, --switch, --q, --rain, or even --
planet-99x. It will not match help--, switch--station, or anything else that does not begin with two
dashes.

$switch = $1;

The next line assigns the value of the variable $1 to the variable $switch. After a regular expression,
Perl remembers any items in parentheses, and it remembers them by putting them into $1, $2, $3,
$4, etc., on up to however many sets of parentheses were in the regular expression. We only have one
set of parentheses, so we only get $1.

Because our parentheses were after the two dashes, $switch will now contain the part of that switch
not including the initial two dashes.

#pull this switch off of the front of the list
shift;

We’ve already used shift. It shifts an item off of the front of a list. By default, it shifts it off of the
front of the list of command-line arguments. Since @ARGV is the list of arguments, shift shifts the
first argument off of @ARGV. Once shifted off, that first argument is gone. What used to be the
second argument is now the first argument. This gets us ready for the next turn through the loop.
$ARGV[0] is now the next argument.

#if they ask for help, do it and exit
if ($switch eq "help") {

help();
exit;

}

This section looks very familiar. The only part that’s changed is the if line. Instead of checking to see
if $ARGV[0] is equal to “--help”, we’re checking to see if $switch is equal to “help”. If it is, we call
the help subroutine and exit the script.

Smarter scripts—13

Case sensitivity
So after all that, we still haven’t added case sensitivity to the script. But now, we can add pretty
much anything we want. Our switch is going to be called case. What we’ll do is set $sensitive if we
want the search to be case sensitive.

Replace the closing curly bracket where we’re checking for the help option with:

} elsif ($switch eq "case") {
$sensitive = 1;

}

The whole switch section should look like:

if ($switch eq "help") {
help();
exit;

} elsif ($switch eq "case") {
$sensitive = 1;

}

This is pretty simple, so far. If the command-line switch is “--case” then assign the number 1 to the
variable $sensitive.

Replace the line that prints out the song information with:

if ($sensitive) {
$matched = /$searchFor/;

} else {
$matched = /$searchFor/i;

}
#print the information if this line contains our search text
print "$song ($album, by $artist)\n" if $matched;

If $sensitive has something in it, we match without the case-insensitivity modifier. Otherwise, we
match with the case-insensitivity modifier. We assign the result of that match to $matched, and then
if $matched has something in it we print the song information. (You might ask why we don’t just
create a variable that either has “i” in it or not. The answer is that we can’t do that. A variable won’t
work in that part of a regular expression.)

Now, you can search for:

./show --case Yellow songs.txt

./show --case yellow songs.txt

And get different results. Add the help line to the help subroutine and we’re done with this option:

print "\t--case: be sensitive to upper and lower case\n";

14—Smarter scripts

Boolean logic
So far our search has been for things that match. But sometimes filters are useful to filter out rather
than filter in. We can add a switch that will cause the script to print out only those songs that don’t
match the search. To do this, we’re going to need to understand Boolean logic. In case you’ve
forgotten your Boolean logic from high school, it is basically about true and false. Perl treats items
that contain something other than zero as true. It treats items that contain zero or nothing as false.

Code in your if or while parentheses are treated by Perl as Boolean expressions, as true or false.

You can reverse something from false to true or true to false with NOT, which in Perl is the
exclamation point.

First, add the switch to our list of switches:

} elsif ($switch eq "reverse") {
$reverse = 1;

}

Then, add some new code to the while loop, after we assign a match or lack thereof to $match, but
before we print the song information:

#reverse the match if we want non-matching lines
if ($reverse) {

$matched = !$matched;
}

You might also want to change the comment in front of the print line:

#print the information if this line is one we want

And, of course, add a line to the help subroutine:

print "\t--reverse: filter out songs that contain the search text\n";

So, now, if you want to see every song that does not mention best anywhere, use:

./show --reverse best songs.txt

Well. That showed a lot. Let’s see if we can do something about that.

Exiting loops ahead of time
Often when we’re testing we don’t really want to see everything, we just want to see that it worked.
The first several results will let us know that. Let’s put in a switch to limit the number of results to a
specified maximum. We’ll call this switch limit and it will be followed by a number.

} elsif ($switch eq "limit") {
$limit = shift;
if ($limit !~ /^[1-9][0-9]*$/) {

print "\nYou must limit to a number, such as '33' or '2'.\n\n";
help();
exit;

Smarter scripts—15

}
}

First, we assign the result of the shift to a variable—our $limit variable. The next item on the
command line after --limit should be the number of lines we want to limit to. Just to make sure, we
check:

if ($limit !~ /^[1-9][0-9]*$/) {

This is a different form of regular expression. Instead of “=~” it is “!~”. This will match if the regular
expression doesn’t match the text on the left. Remember, an exclamation point often stands in for the
word not in Perl. Other than that, this regular expression is the same as any other.

We’ve already met the caret. When it is at the beginning of a regular expression, it matches the
beginning of the text. The dollar sign, when it appears at the end of a regular expression, matches the
end of the text. Square brackets match a list or range of characters. Here we’re using them to match a
range. The first character must be a digit from 1 to 9. The second character must be a digit from 0
to 9. Normally, this would mean that the limit would have to be 10 to 19. However, immediately
following the “[0-9]” there is an asterisk. The asterisk is just like the plus symbol in regular
expressions except that it matches zero or more occurrences of the preceding piece of text instead of
one or more.

Since the preceding character is any digit from 0 to 9, the combination of “[0-9]” and an asterisk
matches zero or more digits. Matches would include 100, 1, 9, 19, 55, 637. Non-matches would
include 01, 99X, Buffalo99. Any text that includes non-numbers or that begins with a zero will not
match.

If the text following the --limit switch isn’t a number, the script warns them that it needs a number
there, calls the help subroutine, and exits.

So, that’s a little bit more complicated of a switch. How do we handle implementing it?

Replace the line that prints the song information with:

#print the information if this line is one we want
if ($matched) {

$matches++;
print "$song ($album, by $artist)\n";

}
last if $limit && $matches >= $limit;

We’ve moved the if off of the print line and instead created an if block. We have Perl perform this
block if $matched has something in it, that is, if it is true. If we have a match, the first thing we do is
increment the variable $matches by 1. That’s what the “++” does. When “++” follows a variable, Perl
will add one to that variable. If the variable doesn’t exist, or if it is not a number, Perl assumes it is 0
and sets it to 1.

Thus, $matches will count up the number of matches we have hit so far.

Outside of the if block, we have a new command: last. The last command exits the current loop,
even if the loop wouldn’t otherwise be finished.

16—Smarter scripts

We have an if following the last command, however, so the last only gets performed if “$limit &&
$matches >= $limit”.

In other words, if $limit has something in it AND if $matches is greater than or equal to $limit.

If $limit doesn’t have anything in it—if we didn’t specify a limit—the last never gets performed. If
$limit does have something in it, the last will get performed if $matches ever equals or exceeds the
limit we specified on the command line.

Remember to add the help line:

print "\t--limit x: limit to x results\n";

You can now do searches and limit the results. Try the non-best-of search again, with a limit of 10:

./show --reverse --limit 10 best songs.txt

./show --reverse --limit 12 aerosmith songs.txt

And the screen no longer fills up with the thousands of non-matching songs.

Multiple options
Some switches will have a small list of options to choose from. For example, we modified our script
to display the song information in a more human-readable format. But what if we want to keep the
raw format under some circumstances? Maybe we want to take the raw song listing, filter out some
albums we no longer have, and then create a new raw listing from that filter.

It we want that, it makes sense to create a --format switch that can take only two options: raw and
(say) simple. Add the following lines to the switch section:

} elsif ($switch eq "format") {
$format = shift;
if ($format ne "raw" && $format ne "simple") {

print "\nFormat must be raw or simple.\n\n";
help();
exit;

}
}

Pretty normal stuff here. The letters “ne” stand for “not equal” to. So, if the user specifies a format
that is not raw and that is not simple, the script displays the help and exits.

Now, replace the line that prints the song information with:

if ($format eq "raw") {
print;

} else {
print "$song ($album, by $artist)\n";

}

What we’re really doing here is printing the current line if the user specified a format of raw, and
printing the simpler information in every other case. But this may change later if we add more

Smarter scripts—17

formats. You will usually want to include the default as an option, just in case you make changes
later.

./show --limit 12 --format raw aerosmith songs.txt

./show --limit 12 --format simple aerosmith songs.txt

If you were filtering out information to a new file, you might do this to redirect the output to that
file:

./show --format raw aerosmith songs.txt > aerosmith.txt

./show love aerosmith.txt

You can also type “more aerosmith.txt” to verify that it has what you expect: all songs by Aerosmith.

You’ll want to add format to the help subroutine:

print "\t--format <raw or simple >: choose format for results\n";

Script confusion
What happens if you misspell a switch? Try:

./show --limitt 12 aerosmith songs.txt

What is it doing? Those lines don’t contain “aerosmith”. It’s understandable that the script wouldn’t
stop at 12 because we misspelled limit, but what is it showing us? Try:

./show --limitt 12 aerosmith songs.txt | more

and then scroll up a line:

Can't open aerosmith: No such file or directory at ./show line 32.

It isn’t looking for lines containing “aerosmith”. It thinks “aerosmith” is a file that it needs to search
through. What is it looking for? All lines that contain the mention of “12”. That’s because the script
saw --limitt as a possible switch, and shifted it off the argument list. But it did not see 12 as a
possible switch so it left it on. Our script grabs the first item on the argument list as what to search
for. In this case, that was 12.

What we need to do is have the script stop when it hits something it doesn’t understand. That’s easy
enough to do. Add another switch:

} else {
print "\nI do not understand the option '$switch'.\n\n";
help();
exit;

}

This section must always be the final section of the switch area. If we’re in the switch area it is
because the script saw a double-dash. If we get to the final “else”, that is because none of our known
switches matched the text following the double-dash. That’s going to be either because the user
misspelled it or because the user doesn’t understand what this script does.

So, we have the script tell the user this, call the help subroutine, and exit.

18—Smarter scripts

The current script
Just so we’re on the same page, here is what the script currently looks like:

#!/usr/bin/perl
#Search for songs in a file of the following tab-separated data:
title, duration, artist, album, year, rating, rip date, track position, genre
#strip off the command-line switches and act on or remember them
while ($ARGV[0] =~ /^--(.+)/) {

$switch = $1;

#pull this switch off of the front of the list
shift;

#if they ask for help, do it and exit
if ($switch eq "help") {

help();
exit;

} elsif ($switch eq "case") {
$sensitive = 1;

} elsif ($switch eq "reverse") {
$reverse = 1;

} elsif ($switch eq "limit") {
$limit = shift;
if ($limit !~ /^[1-9][0-9]*$/) {

print "\nYou must limit to a number, such as '33' or '2'.\n\n";
help();
exit;

}
} elsif ($switch eq "format") {

$format = shift;
if ($format ne "raw" && $format ne "simple") {

print "\nFormat must be raw or simple.\n\n";
help();
exit;

}
} else {

print "\nI do not understand the option '$switch'.\n\n";
help();
exit;

}
}
#the first item on the command line is what we're searching for
if ($searchFor = shift) {

while (<>) {
#split out the song, duration, artist, and album
($song, $duration, $artist, $album) = split("\t");

if ($sensitive) {
$matched = /$searchFor/;

} else {
$matched = /$searchFor/i;

}

#reverse the match if we want non-matching lines
if ($reverse) {

$matched = !$matched;
}

#print the information if this line is one we want
if ($matched) {

$matches++;
if ($format eq "raw") {

print;
} else {

print "$song ($album, by $artist)\n";
}

}

Smarter scripts—19

last if $limit && $matches >= $limit;
}

} else {
help();

}
#describe how this script is used
sub help {

print "Syntax: show <search text> [song files]\n";
print "\tSearch for <search text> in the song file. If no song file is specified\n";
print "\t'show' will expect it on standard input.\n";
print "\tA song file is a tab-delimited file with:\n";
print "\ttitle, duration, artist, album, year, rating, rip date, track position, genre\n";
print "\t--help: print this help text\n";
print "\t--case: be sensitive to upper and lower case\n";
print "\t--reverse: filter out songs that contain the search text\n";
print "\t--limit x: limit to x results\n";
print "\t--format <raw or simple >: choose format for results\n";

}

Arrays and functions
We’ve done a little bit with an array already: the list of arguments to the script is a simple array.
We’ve only ever referenced the first item in that array, shifting that first item out so that the next
items is now first. We can do quite a bit more with arrays in Perl.

Besides simple arrays, there are also associative arrays. An associative array is one which, instead of
using numbers to reference the values in the array, uses keys. It associates a key with a value. So
instead of asking for the first, second, or third item in the list, you can ask for the value that
corresponds to “The Band”, or the value that corresponds to “Jane Jensen”.

For example, we might want to create a third format, one that summarizes songs by artist, showing
how many songs each artist has in the matches.

If we’re going to have a bunch of formats, it will be easier to keep a list of them. Add the following
lines just above the “strip off the command-line switches” section:

#options for the --format switch
@validFormats = ("raw", "simple", "summary");
$validFormats = join(", ", @validFormats);

The first line (below the comment) assigns a simple array of three items: raw, simple, and summary.
I mentioned it in passing earlier, but all simple arrays begin with the @ symbol.

The second line assigns the result of the “join” function to a scalar variable called $validFormats.
The “join” function combines an array into a scalar, using the first argument as its glue. Here, we
specify a command and a space as the “glue”, so $validFormats will be “raw, simple, summary”.

Functions are like subroutines, but they are built in to Perl.

Don’t get confused by the fact that the scalar variable $validFormats and the simple array
@validFormats have the same text for their name. They are not the same variable, and as far as Perl is
concerned they are completely unrelated.

Now, inside the switches area, change, the “if ($format ne…” line and the print following it to:

if (!grep(/^$format$/, @validFormats)) {
print "\nFormat must be $validFormats.\n\n";

The second line is simple enough: instead of us typing the valid formats, we’re using the
automatically-created variable that holds them as a piece of text.

The first line uses the grep function to check whether or not $format exists in the array
@validFormats. Like join, grep takes two arguments, and the second one is a list. The first one,
however, is a regular expression. So in that line, grep is checking to see if any of the items in
@validFormats begins and ends with $format: the caret anchors $format to the beginning, and the
dollar sign anchors it to the end.

22—Arrays and functions

Go ahead and try a few options and see how they work. Both ‘simple’ and ‘summary’ will currently
do the same thing, since we haven’t added any code for ‘summary’.

./show --format unknown girl aerosmith.txt

./show --format raw girl aerosmith.txt

./show --format summary girl aerosmith.txt

So the next step is to handle the summary format. Where the script prints out the song information,
between the raw and simple format, add:

} elsif ($format eq "summary") {
$artists{$artist}++;

That section should now be:

if ($format eq "raw") {
print;

} elsif ($format eq "summary") {
$artists{$artist}++;

} else {
print "$song ($album, by $artist)\n";

}

Go ahead and try for a summary:

./show --format summary girl songs.txt

Nothing should happen. When we ask for a summary, we are no longer printing anything, but only
keeping track by incrementing… what are we incrementing?

$artists{$artist}++;

The “++” we’ve already met: it increments the variable to the left of it. The variable to the left looks
vaguely like a value from a simple array, except that instead of using square brackets we’re using
curly brackets. That’s how you tell the difference between a simple array and an associative array.
Simple arrays use square brackets to get at their individual values, and associative arrays use curly
brackets to get at their individual values.

If $artist contains “Eurythmics”, this will add one to the value of $artists{"Eurythmics"}. If that
value didn’t previously exist, it is assumed to be 0 and now is 1. If it was 1, it is now 2, and so on.

Finally, just outside of the end of the while block that loops through the song information, we can
print out the summary:

if (%artists) {
@artists = keys %artists;
@artists = sort @artists;
foreach $artist (@artists) {

$artistCount = $artists{$artist};
print "$artist: $artistCount\n";

}
}

If the associative array %artists exists—that is, if we’ve been keeping track of how many songs each
artist has—we’ll perform the rest of this if block.

Arrays and functions—23

The first line inside the block gets the keys out of the %artists associative array. The keys are a simple
list, so they go into @artists.

The second line sorts @artists, and then assigns the sorted @artists back to itself.

The next block is a foreach block. Very much like a while block, it loops through its lines for as long
as it has something to loop through. The difference is that foreach gets its things to loop through
from a simple array, in this case @artists. Foreach places each piece into the first item, in this case the
scalar variable $artist.

So if there are three matching artists, Pink Floyd, Warren Zevon, and Stillwater, the first time
through $artist will contain “Pink Floyd”, the second time through “Warren Zevon”, and the third
time through “Stillwater”.

Inside the foreach block, the first line assigns the artist’s total songs to the variable $artistCount, and
the second line prints out the artist’s name and count.

./show --format summary stand songs.txt

You should get several lines, including that Bing Crosby has 23 songs, Taco 11, and William S.
Burroughs 1 matching “stand”.

Change the help subroutine to reflect the new format:

print "\t--format <$validFormats>: choose format for results\n";

Sort numerically
By default, “sort” will sort alphabetically by value. But if we’re willing to write our own subroutine
we can sort by pretty much any criteria we want. Create a “byArtistCount” subroutine:

sub byArtistCount {
return $artists{$b} <=> $artists{$a};

}

Add this to the sort line:

@artists = sort byArtistCount @artists;

And run the command again:

./show --format summary stand songs.txt

The top four artists should be Judy Garland, Bing Crosby, The Lennon Sisters, and Linda Ronstadt,
at 51 songs, 23 songs, 14 songs, and 12 songs, respectively.

This subroutine is a special one for sorts. When sort calls a sort subroutine it is asking that
subroutine which of two items should come first. Perl automatically puts the first item in $a and the
second item in $b. If the subroutine returns a negative 1, sort assumes that $a comes first. If the
subroutine returns a positive 1, sort assumes that $b comes first. If the subroutine returns a 0, sort
assumes that both can be ordered either way.

24—Arrays and functions

The “<=>”” is a useful operator for sort subroutines, because it returns a negative 1 if the number on
the left is lower, a positive 1 if the number on the right is lower, and a zero if both numbers are the
same.

Which means that this subroutine ends up sorting the artist names according to their count in
%artists; and because I’ve put $b on the left and $a on the right, it sorts in descending order.

If you’re comparing two pieces of text rather than two numbers, the “cmp” operator does the same
thing for text that “<=>” does for numbers. Here’s a quick script that lets you play around with
compares:

#!/usr/bin/perl

$item1 = shift;
$item2 = shift;

print "Text compare: ", $item1 cmp $item2, "\n";
print "Number compare: ", $item1 <=> $item2, "\n";

Call it “compare”, make sure you set it to chmod u+x, and play around with giving it two items:

./compare hello world

./compare 3 5

A smarter join
Go back and ask for some format that doesn’t exist:

./show --format wriggling stand songs.txt
Format must be raw, simple, summary.

That should really be raw, simple, or summary. It’s grating to read otherwise. We can make our own
subroutine that joins lists together but accepts a conjunction as well as a simple separator.

sub englishJoin {
my($punctuation) = shift;
my($conjunction) = shift;
my(@items) = @_;

my($joined, $finalItem);

if ($#items == -1) {
$joined = "";

} elsif ($#items == 0) {
$joined = $items[0];

} elsif ($#items == 1) {
$joined = "$items[0] $conjunction $items[1]";

} else {
$finalItem = pop(@items);
$joined = join($punctuation, @items) . "$punctuation$conjunction

$finalItem";
}

Arrays and functions—25

return $joined;
}

This subroutine is expecting that the first parameter it gets is the punctuation (the comma, in our
case), the second item it gets is the conjunction (“or”), and the rest of the items is the list that needs
to be joined. The symbols @_ in a subroutine mean the list of parameter the subroutine has received,
much like @ARGV means the list of command-line arguments. Inside of a subroutine, shift
automatically shifts items out of @_ instead of @ARGV.

Subroutines, by default, have access to all of the variables that the script uses. We used this to our
advantage in the byArtistCount sort script. However, most of the time we want to make sure that
the variables we use in a subroutine don’t accidentally clobber the other variables used in the script.

Any variable inside of a my() is “local” to the current subroutine. If another variable outside of the
subroutine has the same name, that other variable won’t affect the “my” variable, and the “my”
variable won’t affect that wider variable.

It is always a good idea to automatically “my” any variables a subroutine uses, unless you specifically
want to be referencing outside variables.

The characters “$#” in front of a variable name count up the number of items in that array. More
specifically, it gives you the current highest item in that simple array. If the array currently has three
items in it, the current highest item number is 2, and that’s what “$#” will give you. If the array has
one item in it, the current highest item number is 0, and that’s what “$#” will give you.

So we have different if blocks depending on whether there are no items in the list (negative one), one
item, two items, or three or more items.

Instead of using “eq” to check what $#items is equal to, we are using two equal signs. Perl uses “eq”
and “ne” for comparing text. It uses “==” and “!=” for comparing numbers. This is important because
Perl doesn’t care whether a variable is text or is a number until you ask it to make the comparison.
Go back to your “compare” script and type:

./compare 10 2

You should get:

Text compare: -1
Number compare: 1

Alphabetically, 10 comes before 2. Numerically, 2 comes before 10. With a text compare “10.0” will
not equal “10”. But numerically, 10.0 will equal 10. Use the correct operator depending on whether
you want to compare as text or compare as a number.

Here, we are comparing as numbers.

The final “else” has a few new things in it also. The pop function is the same as shift except that it
takes an item off of the end of the array instead of the beginning.

Those are periods between the “join(…)” function and the text in quotes. If you want to add two
numbers together, you use “+”. But if you want to add two strings to each other you use a period.
This is also sometimes called concatenation.

26—Arrays and functions

Change

$validFormats = join(", ", @validFormats);

to

$validFormats = englishJoin(", ", "or", @validFormats);

And now:

./show --format wriggling stand songs.txt
Format must be raw, simple, or summary.

So, now it works, and it will work for any future formats that we add. We also have a new
subroutine available if we need a more readable join for any list.

Format conversions
It is now very easy to add new formats. One common use of Perl is to convert data into HTML.
Our song listings could just as easily be turned into HTML table rows for insertion into an HTML
table.

First, add a new format called “html” to @validFormats.

@validFormats = ("raw", "simple", "html", "summary");

Second, add a new “elsif” to the part of the script that displays the data:

} elsif ($format eq "html") {
print "<tr><td>$song</td><td>$album</td><td>$artist</td></tr>\n";

Now, repeat some of your previous searches, but ask for the format to be html instead. The data will
be displayed in rows that could be included as part of a web page:

./show --album yellow --song girl --format html songs.txt
<tr><td>Young Girl Blues</td><td>Mellow Yellow</td><td>Donovan</td></tr>
<tr><td>Dirty little girl</td><td>Goodbye Yellow Brick Road</td><td>Elton John</td></tr>
<tr><td>All the girls love Alice</td><td>Goodbye Yellow Brick Road</td><td>Elton John</
td></tr>

If your web server supports server-side includes, you can automatically include this in your web page.
Write it to a file using “>” redirection and include that file.

The current script
#!/usr/bin/perl
#Search for songs in a file of the following tab-separated data:
title, duration, artist, album, year, rating, rip date, track position, genre

#options for the --format switch
@validFormats = ("raw", "simple", "html", "summary");
$validFormats = englishJoin(", ", "or", @validFormats);
#strip off the command-line switches and act on or remember them
while ($ARGV[0] =~ /^--(.+)/) {

$switch = $1;

Arrays and functions—27

#pull this switch off of the front of the list
shift;
#if they ask for help, do it and exit
if ($switch eq "help") {

help();
exit;

} elsif ($switch eq "case") {
$sensitive = 1;

} elsif ($switch eq "reverse") {
$reverse = 1;

} elsif ($switch eq "limit") {
$limit = shift;
if ($limit !~ /^[1-9][0-9]*$/) {

print "\nYou must limit to a number, such as '33' or '2'.\n\n";
help();
exit;

}
} elsif ($switch eq "format") {

$format = shift;
if (!grep(/^$format$/, @validFormats)) {

print "\nFormat must be $validFormats.\n\n";
help();
exit;

}
} else {

print "\nI do not understand the option '$switch'.\n\n";
help();
exit;

}
}
#the first item on the command line is what we're searching for
if ($searchFor = shift) {

while (<>) {
#split out the song, duration, artist, and album
($song, $duration, $artist, $album) = split("\t");

if ($sensitive) {
$matched = /$searchFor/;

} else {
$matched = /$searchFor/i;

}
#reverse the match if we want non-matching lines
if ($reverse) {

$matched = !$matched;
}
#print the information if this line is one we want
if ($matched) {

$matches++;
if ($format eq "raw") {

print;
} elsif ($format eq "html") {

print "<tr><td>$song</td><td>$album</td><td>$artist</td></tr>\n";
} elsif ($format eq "summary") {

$artists{$artist}++;
} else {

print "$song ($album, by $artist)\n";
}

}
last if $limit && $matches >= $limit;

}
if (%artists) {

@artists = keys %artists;
@artists = sort byArtistCount @artists;
foreach $artist (@artists) {

$artistCount = $artists{$artist};
print "$artist: $artistCount\n";

}
}

} else {
help();

}

28—Arrays and functions

#describe how this script is used
sub help {

print "Syntax: show <search text> [song files]\n";
print "\tSearch for <search text> in the song file. If no song file is specified\n";
print "\t'show' will expect it on standard input.\n";
print "\tA song file is a tab-delimited file with:\n";
print "\ttitle, duration, artist, album, year, rating, rip date, track position, genre\n";
print "\t--help: print this help text\n";
print "\t--case: be sensitive to upper and lower case\n";
print "\t--reverse: filter out songs that contain the search text\n";
print "\t--limit x: limit to x results\n";
print "\t--format <$validFormats>: choose format for results\n";

}
sub byArtistCount {

return $artists{$b} <=> $artists{$a};
}
sub englishJoin {

my($punctuation) = shift;
my($conjunction) = shift;
my(@items) = @_;
my($joined, $finalItem);
if ($#items == -1) {

$joined = "";
} elsif ($#items == 0) {

$joined = $items[0];
} elsif ($#items == 1) {

$joined = join(" $conjunction ", @items);
} else {

$finalItem = pop(@items);
$joined = join($punctuation, @items) . "$punctuation$conjunction $finalItem";

}
return $joined;

}

Custom search
Remember that search for “stand” that topped the list with a bunch of older artists? Try that search
again without asking for a summary and most of them don’t have “stand” anywhere in the song,
artist, or album.

The genre for those songs is Standards. Ask for raw format and you’ll see that. Our search is
searching through the entire line, both the stuff we can see and the stuff we can’t.

Currently, our script searches everything for the text we specify. It would be nice to be able to focus
our search on just the artist, just the album, or just the song. This way, we can search for songs about
Yellow without songs about Yellow without picking up albums that mention Yellow.

If we want to search for all songs that mention “yellow” by an artist whose name contains “joni”, we
might use:

./show –artist Joni –song yellow songs.txt

The first step to doing this is to add artist, song, and album to the list of switches.

First, make a list of valid fields to search in:

#options for fields to search in
@validFields = ("artist", "album", "song");
$validFields = englishJoin(", ", "and", @validFields);

Second, add another elif to the switches area:

} elsif (grep(/^$switch$/, @validFields)) {
if ($searchText = shift) {

$searches{$switch} = $searchText;
} else {

print "\nSearching in $switch requires text to search on.\n\n";
help();
exit;

}

We’re storing the search text in an associative array whose key is the field we want to search on.

Because we are now going to be doing multiple searches, we’re going to want a subroutine to do the
search. Otherwise, we’ll have to duplicate the “if ($sensitive)” lines for each field we want to search
on:

sub match {
my($searchIn) = shift;
my($searchFor) = shift;
my($matched) = 0;

if ($sensitive) {
$matched = $searchIn =~ /$searchFor/;

} else {

30—Custom search

$matched = $searchIn =~ /$searchFor/i;
}

return $matched;
}

Change “if ($searchFor = shift) {“ to:

if (%searches) {

Instead of expecting some search text, we’re now checking to see if at least one of the searches has
been specified. The if block will only be performed if the associative array called “searches” exists and
isn’t empty.

And finally, replace the “if ($sensitive)” blocks with:

foreach $searchField (keys %searches) {
$needle = $searches{$searchField};
$haystack = $$searchField;
$matched = match($haystack, $needle);
last if !$matched;

}

Go to the command line and type:

./show --album yellow --song girl songs.txt

You should get back three songs. The albums “Mellow Yellow” and “Goodbye Yellow Brick Road”
both contain at least one song whose title contains “yellow”.

First, we assign the number ‘1’ to the variable $matched. By default, we’re assuming that we found a
match.

Next, we loop through each field for which we want to search for text. For each such field:

1. We pull the text we’re looking for back out of the “searches” associative array, and assign that
text to the variable $needle.

2. We grab the haystack—the text of the current field, that we want to search through, through
a little trick called dereferencing a symbolic reference. Imagine that we are searching for an
artist. The %searches array contains “artist” as the key and “some text” as the value. So,
$searchField will be “artist”. Now, look up above and see that we have a variable called
$artist. If $searchField is “artist”, then $$searchField is the same as $artist. So when we say
$haystack = $$searchField, this is the same as saying $haystack = $artist.

3. We set $matched to whether or not $needle can be found in $haystack. If the needle can’t be
found, $matched will be false.

4. If $matched is false, there is no need to go any further, so the last line exits if !$matched.

5. At the end of this loop, $matched is either true or false. If it is true, this track matched our
search. Otherwise it did not. It failed at least one of the searches requested on the command
line.

Custom search—31

If $matched can go through all three checks without becoming zero, that means that this song
matches our search. Remember that some checks will be skipped, and thus not affect $matched.

Go ahead and play around with some searches. You can find all of the Elton John songs about girls
on albums about yellow, with:

./show --album yellow --song girl --artist "Elton John" songs.txt

All of the Elton John songs about girls can be found with:

./show --song girl --artist "Elton John" songs.txt

And, of course, don’t forget to add a line to the help for this item! You’ll need to change the top
item:

print "Syntax: show [options] [song files]\n";

And add a few lines to the bottom:

print "\t--$validFields <searchtext>: search in the $validFields field\n";
print "At least one of the search requests must be specified.\n";

That’s it!

Symbolic references can be taken to any level. If $key contains “artist”, $artist contains “Baez”, and
$Baez contains “Joan”, then $$key is the same as $artist which is the same as “Baez”. $$$key is the
same as $$artist which is the same as $Baez which is the same as “Joan”. Symbolic references are a
powerful tool, but can easily make your script confusing. Use them carefully.

New fields
Now that we have an array of valid fields to search through, it’s easy enough to add new ones. Go
ahead and add “genre” to the list of valid fields:

@validFields = ("artist", "album", "song", "genre");

At the moment, the script doesn’t know about genre, so let’s tell the script about all of the fields the
file has. Change the “split” lines to:

#split out the song information
($song, $duration, $artist, $album, $year, $rating, $ripdate, $track, $genre) = split("\t");

That’s it. Our script can now limit searches on genre as well as on artist, album, or song:

./show --artist linda --genre standard songs.txt

./show --genre video songs.txt

./show --genre spoken --song senator songs.txt

Custom sort
If you don’t get dereferencing, go back and take another look at it, because we’re going to do a
different kind of dereferencing here. Arrays can have multiple dimensions. So far, all of the arrays
we’ve used have had a single dimension: our simple arrays have been a list of single items, and our

32—Custom search

associative arrays have been simple sets of keys and values. But arrays can have rows and columns
much like a spreadsheet; they can even mix simple arrays in one column with associative arrays in
others.

Adding a sort switch is pretty easy. We’ll want to be able to sort on any valid field, so we can re-use
@validFields for this purpose.

} elsif ($switch eq "sort") {
$sortby = shift;
if (!grep(/^$sortby$/, @validFields)) {

print "\nI can only sort by $validFields.\n\n";
help();
exit;

}
} else {

Because we want to sort the results, we can’t just print out each line as soon as we reach it. We’ll
need to save it for later. Replace the print for raw format with:

$text = $_;

Replace the print for html format with:

$text = "<tr><td>$song</td><td>$album</td><td>$artist</td></tr>\n";

Replace the print for simple format with:

$text = "$song ($album, by $artist)\n";

As a test, you might run the script now; you should see nothing, because we aren’t printing anything
anymore.

After the section the sets the text (and the used to print the text) add:

#store or print the display text and the sort text
if ($sortby) {

$matches[$#matches+1]{'text'} = $text;
$matches[$#matches]{'sort'} = $$sortby;

} else {
print $text;

}

So, if $sortby exists and has something in it we store the $text we just set for later sorting. If we
aren’t going to be sorting it, we just print it out now. The interesting part is how we remember this
text. We have to remember not only the text we want to display, but also the text we want to sort
on.

$matches[$#matches+1]{'text'} = $text;
$matches[$#matches]{'sort'} = $$sortby;

The first line remembers the text. We’re setting up an @matches array that will contain this
information. This will be a simple array: it will simply be a list of items that goes from 0 on up to
however many we find. For a simple array, recall that $#arrayname is the current top item. This
means that $#arrayname+1 is the next empty item. That’s what we’re setting right here: the next
empty item in @matches is getting a new item.

Custom search—33

That new item is, rather than a scalar variable, an associative array. The first association in that array
will be between the word “text” and the display text we want to remember.

The second line remembers what we’re sorting by. Here, we only use $#matches, because the
topmost item is the one we want: the previous line added a new item to @matches, and we want to
add a new association to the associative array we put there.

We associate the word “sort” with the value of the field we want to sort by. This, again, is a symbolic
dereference. If $sortby contains “genre”, $$sortby will be $genre.

So if the first matching song is “Sleeping Bag” by “ZZ Top” from the album “Afterburner”, and we
are sorting by song, the first item in @matches ($matches[0]) will be an associative array associating
“text” with “Sleeping Bag (Afterburner, by ZZ Top)” and associating “sort” with “Sleeping Bag”.

We’re almost ready to try it. Just to make sure we’re on the same page, here is the entire “if
($matched)” section:

if ($matched) {
$matches++;
if ($format eq "raw") {

$text = $_;
} elsif ($format eq "html") {

$text = "<tr><td>$song</td><td>$album</td><td>$artist</td></tr>\n";
} elsif ($format eq "summary") {

$artists{$artist}++;
} else {

$text = "$song ($album, by $artist)\n";
}

#store or print the display text and the sort text
if ($sortby) {

$matches[$#matches+1]{'text'} = $text;
$matches[$#matches]{'sort'} = $$sortby;

} else {
print $text;

}
}

All that’s left is to sort and display the matches. But in order to sort the matches, we need a
subroutine that we can hand to sort, that knows how to sort matches.

sub byCustom {
return $$a{'sort'} cmp $$b{'sort'};

}

When sort calls a subroutine, it does not pass arrays. If the item it is passing is an array, it passes a
hard reference to an array. Just as with symbolic references, we need to dereference a hard reference in
order to get at its value.

Here, $a and $b are going to be hard references to an associative array, because each item in
@matches is an associative array, and we want to sort @matches. Since we want to sort on the text
that is associated with the word ‘sort’ in the associative array, we dereference each array and then ask
for the value associated with “sort” in that array.

34—Custom search

Remember that “cmp” is the text equivalent of “<=>”.

We can also dereference such a reference and get an associative array back by using %$a or %$b. For
example, “%leftside = %$a” would make %leftside be a normal associative array that we could get
keys from or pull values from as normal.

So, now we have our sort routine. We can finally sort and display our matches.

We already have a place outside of the while that is displaying stored information: there’s an “if
(%artists)” block. At the end of that block, and an “elsif” block:

} elsif (@matches) {
@matches = sort byCustom @matches;
foreach $match (@matches) {

print $$match{'text'};
}

}

We sort @matches, assign the sorted array back to @matches, and then go through @matches for
each item it contains. Arrays in Perl do not really contain arrays. They contain hard references to
arrays. So we have to dereference that hard reference in order to get the value associated with “text”
that we want to display.

./show --song shoes songs.txt

./show --song shoes --sort song songs.txt

./show --song shoes --sort artist songs.txt

The first one should show about ten songs that mention “shoes” in the title. The second one should
show the same songs, but sorted by song title. The third shows the same songs sorted by artist name.

Try this:

./show --artist "Elton John" --sort song songs.txt

Looks like we’re not quite done yet. This is sorted by song, but it’s putting the upper-case songs first,
and the lower-case songs second. First it sorts through A to Z and then a to z.

This is easy enough to fix. We need to make the comparison in the byCustom subroutine not care
about upper or lower case. The easiest way to do this is to make the text be all lower case (or all
upper case). There is a function for this: lc(“text”) will convert that text to all lower case. Change the
byCustom subroutine to:

sub byCustom {
if ($sensitive) {

return $$a{'sort'} cmp $$b{'sort'};
} else {

return lc($$a{'sort'}) cmp lc($$b{'sort'});
}

}

Now, by default sorts will not care about case, but if we specify –case sorts will be case sensitive:

./show --artist "Elton John" --sort song songs.txt

./show --artist "Elton John" --sort song –case songs.txt

And add this to the help:

Custom search—35

print "\t--sort <$validFields>: sort by specified field\n";

Backquoting special characters
Go ahead and look up songs from the album “4”:

./show --album 4 songs.txt

You’ll end up getting about 100 songs from all albums that include the number “4” in the album
title. Currently, our searches look for the search text anywhere in the album name, song title, or
artist name. What if we specifically want only the albums with that exact name? Let’s add a switch
called “exact”:

} elsif ($switch eq "exact") {
$exact = 1;

We can implement this immediately after “if (%switches) {“:

#the first item on the command line is what we're searching for

#if we're looking for exact matches, set them up ahead of time
if ($exact) {

foreach $search (keys %searches) {
$searchText = $searches{$search};
$searches{$search} = "^$searchText\$";

}
}

We done all of this before except for the “\$”. It just goes through the keys of %searches, and adds
“^” to the beginning of the search text and “$” to the end. But within Perl texts the dollar sign
means something special. It means replace this with the variable whose name follows. It doesn’t
matter that the variable that follows doesn’t exist, because Perl brings variables into existence the
moment they’re used.

So, what we do is “backquote” the dollar sign. A backquote in front of a special character tells Perl
not to interpret the special character, but rather to leave it as is. You can even backquote backquotes:
"\\n" will not be a new line, it will be a backquote and the letter “n”.

You’ll do the same if you need to put a double-quote inside of double-quoted text. Backquote the
“"” character. Instead of ending the text, Perl will insert the “"” into the text at that point:

$mobster = "Johnny \"Ratface\" Martin";

Don’t forget to add it to the help:

print "\t--exact: the search text must match exactly\n";

As an exercise, you might consider adding a “beginswith” and an “endswith” switch, to match
albums, songs, and artists that begin or end with a specific text.

36—Custom search

The current script
This script is beginning to be useful. You should start thinking about the data you work with on a
regular basis, and how these techniques could automate what you have to do to this data. Scripts like
this can easily be set to run automatically through the use of cron or similar tools.

Anyway, here is the script so far:
#!/usr/bin/perl
#Search for songs in a file of the following tab-separated data:
title, duration, artist, album, year, rating, rip date, track position, genre
#options for the --format switch
@validFormats = ("raw", "simple", "html", "summary");
$validFormats = englishJoin(", ", "or", @validFormats);
#options for fields to search in
@validFields = ("artist", "album", "song", "genre");
$validFields = englishJoin(", ", "and", @validFields);
#strip off the command-line switches and act on or remember them
while ($ARGV[0] =~ /^--(.+)/) {

$switch = $1;
#pull this switch off of the front of the list
shift;
#if they ask for help, do it and exit
if ($switch eq "help") {

help();
exit;

} elsif ($switch eq "case") {
$sensitive = 1;

} elsif ($switch eq "reverse") {
$reverse = 1;

} elsif ($switch eq "limit") {
$limit = shift;
if ($limit !~ /^[1-9][0-9]*$/) {

print "\nYou must limit to a number, such as '33' or '2'.\n\n";
help();
exit;

}
} elsif ($switch eq "format") {

$format = shift;
if (!grep(/^$format$/, @validFormats)) {

print "\nFormat must be $validFormats.\n\n";
help();
exit;

}
} elsif (grep(/^$switch$/, @validFields)) {

if ($searchText = shift) {
$searches{$switch} = $searchText;

} else {
print "\nSearching in $switch requires text to search on.\n\n";
help();
exit;

}
} elsif ($switch eq "sort") {

$sortby = shift;
if (!grep(/^$sortby$/, @validFields)) {

print "\nI can only sort by $validFields.\n\n";
help();
exit;

}
} elsif ($switch eq "exact") {

$exact = 1;
} else {

print "\nI do not understand the option '$switch'.\n\n";
help();
exit;

Custom search—37

}
}
#the first item on the command line is what we're searching for
if (%searches) {

#if we're looking for exact matches, set them up ahead of time
if ($exact) {

foreach $search (keys %searches) {
$searchText = $searches{$search};
$searches{$search} = "^$searchText\$";

}
}
while (<>) {

#split out the song information
($song, $duration, $artist, $album, $year, $rating, $ripdate, $track, $genre) = split("\t");
foreach $searchField (keys %searches) {

$needle = $searches{$searchField};
$haystack = $$searchField;
$matched = match($haystack, $needle);
last if !$matched;

}
#reverse the match if we want non-matching lines
if ($reverse) {

$matched = !$matched;
}
#print the information if this line is one we want
if ($matched) {

$matches++;
if ($format eq "raw") {

$text = $_;
} elsif ($format eq "html") {

$text = "<tr><td>$song</td><td>$album</td><td>$artist</td></tr>\n";
} elsif ($format eq "summary") {

$artists{$artist}++;
} else {

$text = "$song ($album, by $artist)\n";
}
#store or print the display text and the sort text
if ($sortby) {

$matches[$#matches+1]{'text'} = $text;
$matches[$#matches]{'sort'} = $$sortby;

} else {
print $text;

}
}
last if $limit && $matches >= $limit;

}
if (%artists) {

@artists = keys %artists;
@artists = sort byArtistCount @artists;
foreach $artist (@artists) {

$artistCount = $artists{$artist};
print "$artist: $artistCount\n";

}
} elsif (@matches) {

@matches = sort byCustom @matches;
foreach $match (@matches) {

print $$match{'text'};
}

}
} else {

help();
}
#describe how this script is used
sub help {

print "Syntax: show [options] [song files]\n";
print "\tSearch for some text in the song file. If no song file is specified\n";
print "\t'show' will expect it on standard input.\n";
print "\tA song file is a tab-delimited file with:\n";
print "\ttitle, duration, artist, album, year, rating, rip date, track position, genre\n";
print "\t--help: print this help text\n";
print "\t--case: be sensitive to upper and lower case\n";

38—Custom search

print "\t--reverse: filter out songs that contain the search text\n";
print "\t--limit x: limit to x results\n";
print "\t--format <$validFormats>: choose format for results\n";
print "\t--$validFields <searchtext>: search in the $validFields field\n";
print "\t--sort <$validFields>: sort by specified field\n";
print "\t--exact: the search text must match exactly\n";
print "At least one of the $validFields search requests must be specified.\n";

}
sub byArtistCount {

return $artists{$b} <=> $artists{$a};
}
sub englishJoin {

my($punctuation) = shift;
my($conjunction) = shift;
my(@items) = @_;
my($joined, $finalItem);
if ($#items == -1) {

$joined = "";
} elsif ($#items == 0) {

$joined = $items[0];
} elsif ($#items == 1) {

$joined = "$items[0] $conjunction $items[1]";
} else {

$finalItem = pop(@items);
$joined = join($punctuation, @items) . "$punctuation$conjunction $finalItem";

}
return $joined;

}
sub match {

my($searchIn) = shift;
my($searchFor) = shift;
my($matched) = 0;
if ($sensitive) {

$matched = $searchIn =~ /$searchFor/;
} else {

$matched = $searchIn =~ /$searchFor/i;
}
return $matched;

}
sub byCustom {

if ($sensitive) {
return $$a{'sort'} cmp $$b{'sort'};

} else {
return lc($$a{'sort'}) cmp lc($$b{'sort'});

}
}

Creating files
Unix-like operating systems provide an easy means of creating files from any program that has an
output. Often, you won’t even need to worry about creating files, you’ll just redirect to a file and let
the operating system handle it for you.

./show --exact --artist foreigner --format raw songs.txt > foreigner.txt

Because you can pipe directly from one program to another on the command line, you sometimes
won’t even need to create files to store temporary data. If you want to count up how many songs
Foreigner has in songs.txt, you can:

./show --exact --artist foreigner songs.txt | wc -l

Or, one of my favorites,

./show --exact --artist foreigner songs.txt | rev

But sometimes we do need to create our own files, and Perl makes this easy. Suppose we wanted to
be able to create multiple files, perhaps one for each album, or one for each artist?

We can add a switch for this easily enough.

} elsif ($switch eq "export") {
$exportField = shift;
if (!grep(/^$exportField$/, @validFields)) {

print "\nI can only export by $validFields.\n\n";
help();
exit;

}

This switch is exactly like our sort switch. It accepts a valid field; if the user tries to export by
something other than a valid field, the script will warn them and exit.

If the data is being sorted, we are going to have to wait until the end to export the files. So to make it
easier, we’ll simply always wait until the end to export the files. This lets us re-use some of the code
for sorting. Change:

if ($sortby) {
$matches[$#matches+1]{'text'} = $text;
$matches[$#matches]{'sort'} = $$sortby;

} else {

to:

if ($sortby || $exportField) {
$matches[$#matches+1]{'text'} = $text;
$matches[$#matches]{'sort'} = $$sortby if $sortby;
$matches[$#matches]{'file'} = $$exportField if $exportField;

} else {

The script will now remember the matches if either $sortby or $exportField has something in it. We
only store the ‘sort’ association if $sortby has something in it, and we only store the ‘file’ association

40—Creating files

if $exportField has something in it. If $exportField is “album” and $album is “Head Games”, ‘file’
will associate with “Head Games” for this record.

So now we need to change the code that deals with @matches. Change this:

} elsif (@matches) {
@matches = sort byCustom @matches;
foreach $match (@matches) {

print $$match{'text'};
}

}

to:

} elsif (@matches) {
@matches = sort byCustom @matches if $sortby;
foreach $match (@matches) {

if ($exportField) {
$filename = $$match{'file'};
#open the file if we haven't already
if (!$files{$filename}) {

if (!open($files{$filename}, ">$filename")) {
print "Unable to open $filename: $!\n";
exit;

}
}
$filehandle = $files{$filename};
print $filehandle $$match{'text'};

} else {
print $$match{'text'};

}
}

#close all open files
foreach $filehandle (values %files) {

close($filehandle);
}

}

Note that in the second line we now only sort if $sortby has something in it. Otherwise, there’s
nothing to sort on.

We’ve added a new section for “if ($exportField)”, so that if $exportField has something in it we will
print to a file instead of to the “standard output” (usually the screen).

Before writing to a file, the file has to be “opened”. We need to get a “handle” on the file. Since we
need to have a number of files opened it makes sense to store the file handles in an array. This script
stores them in an associative array called %files, associating them with the filename.

Before opening the file with that filename, the script checks to see if there is already a handle
associated with that filename in %files. The script only opens the file if there is not an existing
handle associated with that filename.

Creating files—41

If a file needs to be opened, the script opens it within an if, so that if there’s an error opening the file
it can print an error and exit. Perl always stores the most recent error in a special variable called “$!”.
So, if there’s a problem opening $filename, we have the script print “Unable to open $filename” and
then “$!”. The error message is often very useful. For example, if you don’t have permission to open
a file, the error message will say this.

The important new part is “open($files{$filename}, ">$filename")”. The open subroutine accepts two
parameters. The first is the variable where we want to store the handle to the file. The second is the
name of (or path to) the file we want to open. If we want to be able to write to the file, we need to
prepend a greater than symbol to the filename. (We can also append to files by prepending two
greater than symbols to the filename.)

So, if the script can successfully open the file, we now have a handle to it in $files{$filename}. All
that remains is to get it (with “$filehandle = $files{$filename}”) and print to it.

If you look at some of the previous print commands, they have multiple variables or multiple pieces
of text, separated by commas. Print can accept any number of pieces of text, separated by commas.
However, if the first variable is not separated by the rest of the variables or text by a comma, print
assumes that this is a handle to a file, and redirects its output to that file handle.

That’s why there is only a space between $filehandle and $$match{'text'} in “print $filehandle $
$match{'text'}”.

Finally, after looping through all matches, we grab every value out of %files—each of which is a file
handle—and close that file. The phrase “values %files” is the same as “keys %files” except that it gets
a simple array of %file’s values, rather than a simple array of %file’s keys.

Perl will close files for us automatically as soon as the script ends or exits. But I like to close them
explicitly as soon as they are no longer needed. Otherwise they hang around, open, until the script
ends. Here that’s not a big deal but later on we might alter this script and add more functionality at
the end. If that functionality involves opening files too, we might run up against the operating
system’s limit: most operating systems limit the number of files any one program can open.

Having done all of this, we can now grab, say, all albums by foreigner and create a separate file for
each one:

./show --exact --artist foreigner --export album songs.txt

Of course, you’re going to want to make sure that no album has the same name as a file you don’t
want to erase: every time Perl opens a file, it will happily erase an existing file with the same name.
We’ll see if we can do something about that in the next section.

And, of course, add this to the help subroutine:

print "\t--export <$validFields>: export to files named after the specified field\n"

You probably don’t want to play around too much making export files. It will be very easy to create
hundreds of files in your current directory. We’ll fix this next.

42—Creating files

Creating folders
It’s easy enough to change directory when exporting files in order to ensure that the new files go into
a specific folder, but if you’re using this as part of a cron job it will be easier if you can tell the script
which folder you want the export files to go to.

} elsif ($switch eq "folder") {
if ($exportFolder = shift) {

if (-e $exportFolder) {
#if the folder exists, it needs to be a folder
help("$exportFolder already exists and is not a folder.") if !-d

$exportFolder;
}

} else {
help("The folder option requires a folder name.");

}

What’s with the new use of help()? Every single time we use help, we also exit. Every time except
one, we print out an error message above the call to help. It’s about time we automated this. It can
often be difficult to make the decision to change a function when only a minor change is needed;
every time we’ve called help so far, it’s been a simple effort to add the extra line above and below the
help call. But for simplicity’s sake it is time we combined those two to three lines into a single
subroutine call.

At the top of the help subroutine, just below “sub help {“, add:

#if there is an error message, print it out separated from the rest
if (my($message) = shift) {

print "\n$message\n\n";
}

And at the very end, just before “}”, add:

exit;

At some point, you’ll want to go through and find every use of:

print "some text";
help();
exit;

and replace it with:

help("some text");

If you don’t do it now, add a comment to the top of your script reminding you to do it later.

The other part that’s new is “-e $exportFolder”. There are several tests you can perform on
filenames. They all begin with a dash. This is the exists test. It is “true” if there is a file with that
name. Remember that in Unix, folders are also files.

If that name is already being used, that’s fine if it’s a folder. So we need to make sure it’s a folder.
The “-d” file test tests for that. So we call help if not “-d $exportFolder”. If $exportFolder is not a
directory, the script will print the help, which with the above change will automatically exit the
script.

Creating files—43

Okay, add this option to our help subroutine:

print "\t--folder <foldername>: export files are created in the specified folder\n";

Now it’s time to implement it. Between “@matches = sort byCustom @matches if $sortby;” and
“foreach $match (@matches) {” add:

#create a folder if necessary, and move into it
if ($exportField && $exportFolder) {

if (!-e $exportFolder) {
if (!mkdir($exportFolder)) {

print "Unable to create $exportFolder: $!\n";
exit;

}
}
if (!chdir($exportFolder)) {

print "Unable to move into $exportFolder: $!\n";
exit;

}
}

If there is something in $exportField (that is, if we are exporting into some files) and if there is
something in $exportFolder (that is, if we are doing this into a specific folder), we need to ensure
that the folder exists and that we are in it.

Step one checks to see if $exportFolder already exists, using the -e file test. If it doesn’t, the script
tries to create it using “mkdir()”. This stands for make directory. If that works, fine, but if not (watch
the exclamation point) the script prints the error and exits.

Whether we just created the folder or it already existed, the next step is to get into it. This is the
“chdir()” function. It stands for change directory. It doesn’t mean change a directory, but change into
a directory. It moves the script into that directory so that any files the script creates from now on will
be created in that directory.

If chdir is not successful, the script prints an error and exits.

We can now export the foreigner albums into their own folder:

./show --exact --artist foreigner --export album --folder Foreigner songs.txt

This makes it easier for us to export to multiple files without cluttering up the current directory.

Replacing text
If you play around with export now, you’ll find that some exports don’t work. Go ahead and try:

./show --artist afroman --export genre songs.txt

What you should get back is:

Unable to open Hip Hop/Rap
: No such file or directory

44—Creating files

There are two problems here. One, why is that error message separated onto two lines? It looks like
we’re printing a new line between the export file name and the colon, but if you look in the code
there is no such new line. The second, why would it tell us that there is no such file? We know that:
that’s why we’re trying to create it.

The first problem is an easy one to fix. That new line is in the genre name itself. The genre is the last
field on the line. When we get a line of text from a file in Perl, Perl includes the line break at the end
of the line. When we split the line on tabs, the last item gets this line break, and that last item is the
genre.

In front of the split line where we get song, duration, artist, etc., add:

chomp;

This will chomp any line endings off of the end of the current line. If you want to chomp the line
endings off of a specific variable, you can use “chomp($variable)”. If you want to chomp the line
endings off of a list of variables, you can use “chomp(@list)” or “chomp($variable1, $variable2,
etc.)”.

Because we’re chomping the line endings off of the current line, we need to change the raw format as
well. Change “$text = $_;” to:

$text = "$_\n";

Now the error message is easier to read:

Unable to open Hip Hop/Rap: No such file or directory

The problem here is that Unix uses the slash to separate directory names from each other and from
the file name. Perl thinks the script wants to create a file called “Rap” in a folder called “Hip Hop”.
There is no folder called “Hip Hop”, so this fails with that error.

We need to get rid of that slash. There is another form of regular expression that does this for us.
Let’s add a general subroutine for replacing characters in a piece of text:

sub replace {
my($text, $from, $to) = (shift, shift, shift);

$text =~ s/$from/$to/g;

return $text;
}

Remember that we already know what shift does. Here, we’re just doing it three times in a row to
grab each of the three items we will send this subroutine: the text we want to change, the characters
we want to look for in that text, and the characters we want to replace it with. If we call “replace
("omega man", "m", "d")”, we would expect to get back “odega dan”.

$text =~ s/$from/$to/g;

The “=~” means that this is a regular expression. The “s” in front of the first slash means that this is a
substitution. By default regular expressions only match, they don’t perform any changes. A
substitution will. In order to substitute, it needs to know what to substitute. That’s between the
second slash and the new third slash. What we have here as $to will replace $from in $text.

Creating files—45

By default, substitutions will only make one substitution. If we want the regular expression to affect
all occurrences of $from, we need to specify that this is a global replace. The “g” after the final slash
does this. The “g” is a modifier much like “i” for case insensitive matches.

If we want this to also be case insensitive, we could also add the “i” there too:

$text =~ s/$from/$to/gi;

What we want is to replace slashes with dashes, so replace “$matches[$#matches]{'file'} = $
$exportField if $exportField;” with:

if ($exportField) {
$filename = $$exportField;
$filename = replace($filename, "/", "-");
$matches[$#matches]{'file'} = $filename;

}

If we run the Afroman export again:

./show --artist afroman --export genre songs.txt

We now have a file called “Hip Hop-Rap”.

You might choose a different character to replace slashes. It must be a valid character for your
operating system or you’ll continue to get some sort of error.

Try to break it
One of the most important skills to learn when you’re programming is learning how to break your
scripts. You’ll want to do lots of tests with lots of different kinds of data, but tests can only find
errors that you test on. You will also need to think about where will this break? and fix those errors
before they happen. We’ve done a little of this already, without calling it that. This is why we put
“open(…)” in an “if” statement and match it with an “else” that displays any errors that crop up.

It is especially important to think about how new functionality can break your script. So we recently
added the ability to search, sort, and export by new fields. We can add any field we want to
@validFields and search, sort, and export by that field. How can that break our script?

One way it could break our script is if we try to export on that field but the song doesn’t have
anything entered for it.

In fact, that might be the case even with our current fields. How can we find fields that don’t have
anything in them?

We’re doing our search by regular expression. We haven’t blocked regular expression characters from
the search text. Try:

./show --artist ^Night songs.txt

./show --artist Night$ songs.txt

46—Creating files

The first one will show only those songs by artists whose name begins with “night”. The second
shows artists whose names end with “night”. Because that’s the regular expression character for
anchoring to the beginning or end of a text.

There’s also a regular expression for any character. If we search on that, and then get the reverse, we
can find fields that have no character in them.

./show --artist . --reverse songs.txt

./show --song . --reverse songs.txt

./show --album . --reverse songs.txt

./show --genre . --reverse songs.txt

There are artists, albums, and genres that are completely empty. Try to export on artist and you’ll get
an error:

./show --artist . --reverse --export artist songs.txt
Unable to open : No such file or directory

There’s no way to open a file that has no name. We need to check for empty filenames and give
them some other name, such as “Unknown artist”.

In the “if ($exportField) area that we just changed, change it again:

if ($exportField) {
$filename = $$exportField;
if ($filename ne "") {

$filename = replace($filename, "/", "-");
} else {

$filename = "Unknown $exportField";
}
$matches[$#matches]{'file'} = $filename;

}

Now, if $filename ends up being not equal to an empty string, we do the replace as normal.
Otherwise, we assign “Unknown $exportField” to $filename. If we are exporting by artist, it will say
“Unknown artist”.

The “if ($filename ne "") {” is a little different from “if ($filename = $$exportField) {” which we
could have done. The former will only match if $filename is empty. The latter would also match if
$filename was zero. We might imagine wanting to export based on rating, so that we have a list of
songs each in a file named after their rating. A rating of zero would get a filename of “Unknown
rating” if we used the latter form, but will get a filename of “0” with the one we used.

Timestamps
Some data is time-sensitive. The file came in at a specific time, and you want the exported files to
keep that timestamp. Under Unix, you can see a file’s last modified time using “ls -l”. If you look at
songs.txt you’ll probably see that it was last modified on April 25, 2005. If you look at the export
files you’ve created, their last modified time is today, or the day you exported them.

First, add the switch:

Creating files—47

} elsif ($switch eq "keep-time") {
$keepTime = 1;

and then the help:

print "\t--keep-time: keep the input file's timestamp on any exported files\n";

If we’re going to stamp the files we create so that they have the same timestamp as the file the data
came from, we need to get the timestamp of that file. So far we haven’t cared what file that is. In
fact, our script is designed to allow multiple files to be specified on the command line. We might
imagine exporting raw artist files of all Rock songs, for example, and then searching through the files
for multiple artists.

So the first step is purely on our part, with no coding. If more than one file is specified, what is the
correct timestamp? Do we want the most recent one? The oldest one? Some sort of average? I’m
going to assume that we want the most recent one.

The second problem is that in order to get the timestamp for a file, we need to know the file’s name.
So far we haven’t cared. We’ve let Perl handle the file input for us. Fortunately, there’s no need to
change that. Perl can also tell us the name of the current file. When a script loops through file input,
Perl puts the current filename in a special variable called $ARGV.

Below the “if ($matched) {” line, add:

if ($keepTime) {
@fileInfo = stat($ARGV);
$fileMod = $fileInfo[9];
$lastModified = $fileMod if $fileMod > $lastModified;

}

Simple enough. If $keepTime has something in it, we grab the information for the file called
$ARGV. The stat() function returns a bunch of information about a file; we want the ninth piece.
That’s the last modified time of the file.

Then, we set $lastModified to be this file’s modification time if $fileMod is larger than (more recent
than) the current $lastModified. The first time around, $lastModified has nothing in it, so anything
will be greater than it. After that, $lastModified only gets changed if the current file is newer than
the previous newest file.

One minor problem with this is that it is checking the current file every time we go through the
loop. File system access is usually very fast, but if we’re exporting thousands of records from a
handful of files that’s thousands of stat calls we don’t really need. What we can do is keep track of
the filename, and only get the last modified when $ARGV no longer matches the previously current
filename:

if ($keepTime && $lastFile ne $ARGV) {
@fileInfo = stat($ARGV);
$fileMod = $fileInfo[9];
$lastModified = $fileMod if $fileMod > $lastModified;
$lastFile = $ARGV;

}

So, now we have the timestamp we need, we just need to set each file to have that timestamp. The
easiest place to handle this is after we close each file. The script already goes through each file one by

48—Creating files

one to close it. We can set the last modified time during that loop. Change the entire “#close all
open files” section to:

#close all open files
foreach $filename (keys %files) {

$filehandle = $files{$filename};
close($filehandle);
utime($lastModified, time(), $filename);

}

Instead of just grabbing the values (file handles) out of %files, we need the keys as well. The keys are
the filenames. So, we grab the keys and then grab the values using the key as normal. We close
$filehandle just as we always did, and then we run utime on $filename. Each file has two times that
are commonly used: the last modified time and the last accessed time. The utime function requires
both of them, so we’ll set the first one (the last modified time) to the saved $lastModified from the
input file(s). We’ll set second (last access time) to the current time, since that’s when the file was last
accessed.

The current script
This script is getting pretty big, but we’re almost done with it. Here is how it stands so far.

#!/usr/bin/perl
#Search for songs in a file of the following tab-separated data:
title, duration, artist, album, year, rating, rip date, track position, genre
#options for the --format switch
@validFormats = ("raw", "simple", "html", "summary");
$validFormats = englishJoin(", ", "or", @validFormats);
#options for fields to search in
@validFields = ("artist", "album", "song", "genre");
$validFields = englishJoin(", ", "and", @validFields);
#strip off the command-line switches and act on or remember them
while ($ARGV[0] =~ /^--(.+)/) {

$switch = $1;
#pull this switch off of the front of the list
shift;
#if they ask for help, do it and exit
if ($switch eq "help") {

help();
} elsif ($switch eq "case") {

$sensitive = 1;
} elsif ($switch eq "reverse") {

$reverse = 1;
} elsif ($switch eq "limit") {

$limit = shift;
if ($limit !~ /^[1-9][0-9]*$/) {

help("You must limit to a number, such as '33' or '2'.");
}

} elsif ($switch eq "format") {
$format = shift;
if (!grep(/^$format$/, @validFormats)) {

help("Format must be $validFormats.");
}

} elsif (grep(/^$switch$/, @validFields)) {
if ($searchText = shift) {

$searches{$switch} = $searchText;
} else {

help("Searching in $switch requires text to search on.");
}

} elsif ($switch eq "sort") {
$sortby = shift;

Creating files—49

if (!grep(/^$sortby$/, @validFields)) {
help("I can only sort by $validFields.");

}
} elsif ($switch eq "exact") {

$exact = 1;
} elsif ($switch eq "export") {

$exportField = shift;
if (!grep(/^$exportField$/, @validFields)) {

help("I can only export by $validFields.");
}

} elsif ($switch eq "folder") {
if ($exportFolder = shift) {

if (-e $exportFolder) {
#if the folder exists, it needs to be a folder
help("$exportFolder already exists and is not a folder.") if !-d $exportFolder;

}
} else {

help("The folder option requires a folder name.");
}

} elsif ($switch eq "keep-time") {
$keepTime = 1;

} else {
help("I do not understand the option '$switch'.");

}
}
#the first item on the command line is what we're searching for
if (%searches) {

#if we're looking for exact matches, set them up ahead of time
if ($exact) {

foreach $search (keys %searches) {
$searchText = $searches{$search};
$searches{$search} = "^$searchText\$";

}
}
while (<>) {

#split out the song information
chomp;
($song, $duration, $artist, $album, $year, $rating, $ripdate, $track, $genre) = split("\t");
foreach $searchField (keys %searches) {

$needle = $searches{$searchField};
$haystack = $$searchField;
$matched = match($haystack, $needle);
last if !$matched;

}
#reverse the match if we want non-matching lines
if ($reverse) {

$matched = !$matched;
}
#print the information if this line is one we want
if ($matched) {

#maintain the timestamp if we need it
if ($keepTime && $lastFile ne $ARGV) {

@fileInfo = stat($ARGV);
$fileMod = $fileInfo[9];
$lastModified = $fileMod if $fileMod > $lastModified;
$lastFile = $ARGV;

}
$matches++;
if ($format eq "raw") {

$text = "$_\n";
} elsif ($format eq "html") {

$text = "<tr><td>$song</td><td>$album</td><td>$artist</td></tr>\n";
} elsif ($format eq "summary") {

$artists{$artist}++;
} else {

$text = "$song ($album, by $artist)\n";
}
#store or print the display text and the sort text
if ($sortby || $exportField) {

$matches[$#matches+1]{'text'} = $text;
$matches[$#matches]{'sort'} = $$sortby if $sortby;

50—Creating files

if ($exportField) {
$filename = $$exportField;
if ($filename ne "") {

$filename = replace($filename, "/", "-");
} else {

$filename = "Unknown $exportField";
}
$matches[$#matches]{'file'} = $filename;

}
} else {

print $text;
}

}
last if $limit && $matches >= $limit;

}
if (%artists) {

@artists = keys %artists;
@artists = sort byArtistCount @artists;
foreach $artist (@artists) {

$artistCount = $artists{$artist};
print "$artist: $artistCount\n";

}
} elsif (@matches) {

@matches = sort byCustom @matches if $sortby;
#create a folder if necessary, and move into it
if ($exportField && $exportFolder) {

if (!-e $exportFolder) {
if (!mkdir($exportFolder)) {

print "Unable to create $exportFolder: $!\n";
exit;

}
}
if (!chdir($exportFolder)) {

print "Unable to move into $exportFolder: $!\n";
exit;

}
}
foreach $match (@matches) {

if ($exportField) {
$filename = $$match{'file'};
#open the file if we haven't already
if (!$files{$filename}) {

if (!open($files{$filename}, ">$filename")) {
print "Unable to open $filename: $!\n";
exit;

}
}
$filehandle = $files{$filename};
print $filehandle $$match{'text'};

} else {
print $$match{'text'};

}
}
#close all open files
foreach $filename (keys %files) {

$filehandle = $files{$filename};
close($filehandle);
utime($lastModified, time(), $filename);

}
}

} else {
help();

}
#describe how this script is used
sub help {

#if there is an error message, print it out separated from the rest
if (my($message) = shift) {

print "\n$message\n\n";
}
print "Syntax: show [options] [song files]\n";
print "\tSearch for some text in the song file. If no song file is specified\n";

Creating files—51

print "\t'show' will expect it on standard input.\n";
print "\tA song file is a tab-delimited file with:\n";
print "\ttitle, duration, artist, album, year, rating, rip date, track position, genre\n";
print "\t--help: print this help text\n";
print "\t--case: be sensitive to upper and lower case\n";
print "\t--reverse: filter out songs that contain the search text\n";
print "\t--limit x: limit to x results\n";
print "\t--format <$validFormats>: choose format for results\n";
print "\t--$validFields <searchtext>: search in the $validFields field\n";
print "\t--sort <$validFields>: sort by specified field\n";
print "\t--exact: the search text must match exactly\n";
print "\t--export <$validFields>: export to files named after the specified field\n";
print "\t--folder <foldername>: export files are created in the specified folder\n";
print "\t--keep-time: keep the input file's timestamp on any exported files\n";
print "At least one of the $validFields search requests must be specified.\n";
exit;

}
sub byArtistCount {

return $artists{$b} <=> $artists{$a};
}
sub englishJoin {

my($punctuation) = shift;
my($conjunction) = shift;
my(@items) = @_;
my($joined, $finalItem);
if ($#items == -1) {

$joined = "";
} elsif ($#items == 0) {

$joined = $items[0];
} elsif ($#items == 1) {

$joined = "$items[0] $conjunction $items[1]";
} else {

$finalItem = pop(@items);
$joined = join($punctuation, @items) . "$punctuation$conjunction $finalItem";

}
return $joined;

}
sub match {

my($searchIn) = shift;
my($searchFor) = shift;
my($matched) = 0;
if ($sensitive) {

$matched = $searchIn =~ /$searchFor/;
} else {

$matched = $searchIn =~ /$searchFor/i;
}
return $matched;

}
sub byCustom {

if ($sensitive) {
return $$a{'sort'} cmp $$b{'sort'};

} else {
return lc($$a{'sort'}) cmp lc($$b{'sort'});

}
}
sub replace {

my($text, $from, $to) = (shift, shift, shift);

$text =~ s/$from/$to/g;
return $text;

}

SQL database
One of the most common things Perl is used for when it comes to raw data files is importing them
into databases. To import into databases in Perl, you need a special module. This is normally the
DBI module, and you’ll access it by putting a “use” line at the top of your script. This tells Perl that
you want to access an external module for more functionality.

use DBI;
$dbh = DBI->connect("dbi:SQLite:dbname=TESTDB");

Put this just below your first set of comments, and then run

./show

If it shows you your help as normal, then you have both DBI and SQLite installed on your system.

If it gives you the error “Can’t locate DBI.pm in …”, you’ll need to install DBI and SQLite.

If it gives you the error “install_driver(SQLite) failed: Can't locate DBD/SQLite.pm in @INC…”,
this means that you have DBI but you’ll need to install SQLite.

Installing from CPAN
Fortunately, Perl has an easy way to install modules. Unfortunately, it isn’t so easy if you aren’t the
system administrator. If you aren’t the system administrator, you’ll need to ask your system
administrator to install it for you. If you are, you can do it yourself.

Your system must have a compiler in order to install these Perl modules. You don’t have to know
how to use it. Perl will handle that for you. But you will need it. Many Unix-like operating systems
come with the compiler pre-installed. If you are using Mac OS X, you’ll need to install XCode from
your install CD or DVD.

These instructions assume that your account is an administrative one, where “administrative” means
that it can use the “sudo” command. Type the following from the command line to enter the Perl
shell:

sudo perl -MCPAN -e shell

The first time you enter CPAN it is going to ask a whole bunch of questions. You can choose the
default for all of them. Choose the default by pressing the return key. Note that some questions,
such as “Fetching with Net::FTP:” will take a while. It is downloading information from the
Comprehensive Perl Archive Network. This is a centrally distributed archive for Perl modules
(among other things).

The ones you will have to answer are your continent, your country, and a list of URLs to download
from. (Make sure you choose the URLs by number, and separate them by spaces. Just read the
directions for that question when it comes up.)

54—SQL database

Once cpan is done configuring itself, we can install the modules we need. If you need to install the
DBI module, type:

install DBI

Press return after you type that. If you need SQLite, then, when DBI has finished installing type:

install DBD::SQLite

Perl will attempt to install what it needs for these modules. It will occasionally ask for permission to
download prerequisites. Generally you’ll want to say no, but read http://sial.org/howto/perl/life-
with-cpan/ for specifics. You shouldn’t need anything except DBI and DBD::SQLite for this section
of the tutorial.

See http://search.cpan.org/dist/DBI/lib/DBD/DBM.pm for more information about the DBM
section of the DBI module for Perl.

Using SQLite
Go ahead and remove that “$dbh = …” line that we added for testing. Leave “use DBI;” there.

What we would like to do is import this data from its file into a database. First, add the switch:

} elsif ($switch eq "import") {
if ($importDB = shift) {

$importHandle = DBI->connect("dbi:SQLite:dbname=$importDB");
if (!$importHandle) {

print "Unable to open database $importDB: $!\n";
}

} else {
help("The import switch requires a database name to import to.");

}

The --import switch will require the name of a database. As soon as we get the database name, we try
to open it:

$importHandle = DBI->connect("dbi:SQLite:dbname=$importDB");

This is a bit of a different format than we’ve seen before. DBI is an object. This is a special
programming tool that contains code, called methods, that we can access on that object. One of the
methods is the connect method. It connects to the database. Methods are very much like the
subroutines we’ve already been using. They are almost always accessed using object-

>method(parameters).

If DBI can’t open the database, we exit and try to print an error message.

Add the help:

print "\t--import <database name>: import data into a named database\n";

You might go ahead and type “./show --import” and make sure that the help is displayed as
expected.

SQL database—55

Creating tables
Now we know how to open the database. SQL databases require tables. We need to create one if it
does not already exist. Let’s go ahead and just make a subroutine to do this.

#expects a handle to a database connection, a name for a table, and an associative
#array of field names and field types passed as a reference
sub createTable {

my($dbHandle) = shift;
my($tableName) = shift;
my($tableFields) = shift;

my(@fieldCreators, $createQuery, $queryHandle, $fieldType, $fieldName);

@tables = $importHandle->tables();
if (!grep(/^"$dbTable"$/, @tables)) {

#construct query to create table
foreach $fieldName (keys %$tableFields) {

$fieldType = $$tableFields{$fieldName};
$fieldCreators[$#fieldCreators+1] = "$fieldName $fieldType";

}
$createQuery = "CREATE TABLE $tableName (" . join(", ", @fieldCreators) . ")";

#tell database to create the table
if ($queryHandle = $dbHandle->prepare($createQuery)) {

if (!$queryHandle->execute) {
print "Unable to execute $createQuery: $!\n";

}
} else {

print "Unable to prepare $createQuery: $!\n";
exit;

}
}

}

There are two sections to this subroutine. The first one creates the query that will create the table.
The second one hands that query off to the database. When you use a SQL query in Perl, you
usually hand it off in two steps: first, you prepare it on the handle. This creates a “statement handle”
for the query statement. Then, you execute it from that statement handle. Since both of these handles
are objects with methods, we use the handle->method syntax to prepare and to execute the query.

Pay close attention to the third parameter that this subroutine is expecting: it’s an associative array.
We can’t pass associative arrays to subroutines in Perl. We can only pass scalar variables and lists of
scalar variables. What we’ll need to do when we call this subroutine is pass that associative array by
reference.

If you recall when we were sorting, Perl handed our sort subroutine associative arrays by hard

reference. Well, we can hand hard references out to our subroutines, too.

Change the “$importHandle=” section of the switch for imports. We’ll call the createTable
subroutine as soon as we open the database.

56—SQL database

if ($importHandle = DBI->connect("dbi:SQLite:dbname=$importDB")) {
createTable($importHandle, $dbTable, \%dbFields);

} else {
print "Unable to open database $importDB: $!\n";

}

When you want to pass a variable as a hard reference, precede the variable name with a backslash.

We also need to create the %dbFields associative array. At the top, add the following defaults:

#name of table
$dbTable = "music";
#what kind of fields need to be in the database?
%dbFields = (

"ID"=>"INTEGER PRIMARY KEY AUTOINCREMENT",
"song"=>"TEXT",
"duration"=>"TEXT",
"artist"=>"TEXT",
"album"=>"TEXT",
"year"=>"INTEGER",
"rating"=>"INTEGER",
"ripdate"=>"TEXT",
"genre"=>"TEXT"

);

Note that we are putting this “single line” of Perl code onto several lines. Perl only cares about that
semicolon. That’s how Perl sees the end of a line of code. Separating the associations into separate
lines makes it easier for you, as programmer, to read them.

Also, this is the first time we’ve created an associative array by specifying the keys and values all at
once. It is similar to how we create simple arrays, but each item is a key and a value, separated by
“=>”. The key is on the left and the value is on the right.

Inserting data
Okay, we’ve opened the database and we’ve created the table. Now we need to insert data into the
table. It is time to add functionality to our --import switch.

First, let’s add a subroutine called “insertRow”. This subroutine will be similar to the “createTable”
subroutine, but it will insert rows of data. We’ll pass it the same data: a handle to the database, the
name of the table that will receive the data, and the associative array of fieldnames as a hard
reference.

This subroutine will also expect that the field names in that associative array match an existing scalar
variable with the same name. So if there is a field named “artist”, this subroutine will look in $artist
for that field’s value.

#expects a handle to a database connection, a name for a table, and an associative
#array of field names and field types passed as a reference
#also expects that the field names match a currently-existing scalar variable
sub insertRow {

SQL database—57

my($dbHandle) = shift;
my($tableName) = shift;
my($tableFields) = shift;

my(@fieldNames, @fieldValues, $fieldNames, $fieldValues, $fieldValue);
my($insertQuery, $queryHandle);

#create the field list and value list
@fieldNames = keys %$tableFields;
foreach $fieldName (@fieldNames) {

$fieldValue = $$fieldName;
#set $fieldValue to an appropriate SQL value
if ($fieldValue eq "") {

$fieldValue = NULL;
} else {

$fieldValue = '$dbHandle->quote($$fieldname);
}
$fieldValues[$#fieldValues+1] = $fieldValue;

}
$fieldNames = join(", ", @fieldNames);
$fieldValues = join(", ", @fieldValues);
$insertQuery = "INSERT INTO $tableName ($fieldNames) VALUES ($fieldValues)";

#insert into the database
doQuery($dbHandle, $insertQuery);

}

If you aren’t familiar with SQL, this will create queries such as “INSERT INTO music (artist,
album, year) VALUES ("Foreigner", "4", NULL);”. If a field doesn’t have a value—if it equals the
empty string ""—then we set the value to NULL. Otherwise, we tell the database to correctly quote
this piece of text. We need to do this because SQL requires text to be surrounded by quotes. But
some text contains quotes. The quote method on the database handle understands this, and fixes the
text accordingly.

Once we have the query created, executing the query is the same as executing the CREATE TABLE
query. Rather than have the same code duplicated for each kind of query, we can make a subroutine
to handle it. The subroutine will need the database handle and the query.

sub doQuery {
my($dbHandle) = shift;
my($query) = shift;

if ($queryHandle = $dbHandle->prepare($query)) {
if (!$queryHandle->execute) {

print "Unable to execute $query: $!\n";
}

} else {
print "Unable to prepare $query: $!\n";
exit;

}
}

You should go replace the “if $queryHandle =” section of the createTable subroutine so that it calls

58—SQL database

#tell database to create the table
doQuery($dbHandle, $createQuery);

Now would be a good time to try “./show” with no parameters to see if you have any errors. It
should just give you the help message.

Finally, we need to call this insertRow subroutine for every matching row. At the end of the “if
($matched) {” section, add:

#import into a database?
if ($importDB) {

insertRow($importHandle, $dbTable, \%dbFields);
}

Let’s see if we can make a database of love songs:

./show --song love --import LoveSongs songs.txt

This works, but it is slow. SQLite can be much faster than this. What we need to tell it to do is to
wait until we’re done feeding it rows before it writes them all out to the disk. After the createTable
call in our switches area, add:

$importHandle->{AutoCommit} = 0;

This tells SQLite not to automatically write rows out to the disk as soon as it receives them. We’ll
need to explicitly tell it when to “commit” our changes. Just in front of “if (%artists) {” and just at
the end of the loop through all lines, add:

#commit insertions if we are importing into a database
$importHandle->commit;

Go ahead and remove the file LoveSongs, and run that again:

./show --song love --import LoveSongs songs.txt

It should go much faster.

How do you know the data has been inserted? If you have sqlite3 on your system, you can type
“sqlite3 databasename” to open the database by hand. Then, type:

SELECT * FROM music;

You should see a long list of all of the data that’s been imported. Use “.quit” to exit.

If you don’t have sqlite3 installed on your system, you’ll just have to wait until the next section.

The final script
This is the end of this script. We’ll start from scratch on the next one, and display our data.

#!/usr/bin/perl
#Search for songs in a file of the following tab-separated data:
title, duration, artist, album, year, rating, rip date, track position, genre
use DBI;
#options for the --format switch
@validFormats = ("raw", "simple", "html", "summary");
$validFormats = englishJoin(", ", "or", @validFormats);

SQL database—59

#options for fields to search in
@validFields = ("artist", "album", "song", "genre");
$validFields = englishJoin(", ", "and", @validFields);
#database information
#name of table
$dbTable = "music";
#what kind of fields need to be in the database?
%dbFields = (

"ID"=>"INTEGER PRIMARY KEY AUTOINCREMENT",
"song"=>"TEXT",
"duration"=>"TEXT",
"artist"=>"TEXT",
"album"=>"TEXT",
"year"=>"INTEGER",
"rating"=>"INTEGER",
"ripdate"=>"TEXT",
"genre"=>"TEXT"

);

#strip off the command-line switches and act on or remember them
while ($ARGV[0] =~ /^--(.+)/) {

$switch = $1;
#pull this switch off of the front of the list
shift;
#if they ask for help, do it and exit
if ($switch eq "help") {

help();
} elsif ($switch eq "case") {

$sensitive = 1;
} elsif ($switch eq "reverse") {

$reverse = 1;
} elsif ($switch eq "limit") {

$limit = shift;
if ($limit !~ /^[1-9][0-9]*$/) {

help("You must limit to a number, such as '33' or '2'.");
}

} elsif ($switch eq "format") {
$format = shift;
if (!grep(/^$format$/, @validFormats)) {

help("Format must be $validFormats.");
}

} elsif (grep(/^$switch$/, @validFields)) {
if ($searchText = shift) {

$searches{$switch} = $searchText;
} else {

help("Searching in $switch requires text to search on.");
}

} elsif ($switch eq "sort") {
$sortby = shift;
if (!grep(/^$sortby$/, @validFields)) {

help("I can only sort by $validFields.");
}

} elsif ($switch eq "exact") {
$exact = 1;

} elsif ($switch eq "export") {
$exportField = shift;
if (!grep(/^$exportField$/, @validFields)) {

help("I can only export by $validFields.");
}

} elsif ($switch eq "folder") {
if ($exportFolder = shift) {

if (-e $exportFolder) {
#if the folder exists, it needs to be a folder
help("$exportFolder already exists and is not a folder.") if !-d $exportFolder;

}
} else {

help("The folder option requires a folder name.");
}

} elsif ($switch eq "keep-time") {
$keepTime = 1;

} elsif ($switch eq "import") {

60—SQL database

if ($importDB = shift) {
if ($importHandle = DBI->connect("dbi:SQLite:dbname=$importDB")) {

createTable($importHandle, $dbTable, \%dbFields);
$importHandle->{AutoCommit} = 0;

} else {
print "Unable to open database $importDB: $!\n";

}
} else {

help("The import switch requires a database name to import to.");
}

} else {
help("I do not understand the option '$switch'.");

}
}
#the first item on the command line is what we're searching for
if (%searches) {

#if we're looking for exact matches, set them up ahead of time
if ($exact) {

foreach $search (keys %searches) {
$searchText = $searches{$search};
$searches{$search} = "^$searchText\$";

}
}
while (<>) {

#split out the song information
chomp;
($song, $duration, $artist, $album, $year, $rating, $ripdate, $track, $genre) = split("\t");
foreach $searchField (keys %searches) {

$needle = $searches{$searchField};
$haystack = $$searchField;
$matched = match($haystack, $needle);
last if !$matched;

}
#reverse the match if we want non-matching lines
if ($reverse) {

$matched = !$matched;
}
#print the information if this line is one we want
if ($matched) {

#maintain the timestamp if we need it
if ($keepTime && $lastFile ne $ARGV) {

@fileInfo = stat($ARGV);
$fileMod = $fileInfo[9];
$lastModified = $fileMod if $fileMod > $lastModified;
$lastFile = $ARGV;

}
$matches++;
if ($format eq "raw") {

$text = "$_\n";
} elsif ($format eq "html") {

$text = "<tr><td>$song</td><td>$album</td><td>$artist</td></tr>\n";
} elsif ($format eq "summary") {

$artists{$artist}++;
} else {

$text = "$song ($album, by $artist)\n";
}
#store or print the display text and the sort text
if ($sortby || $exportField) {

$matches[$#matches+1]{'text'} = $text;
$matches[$#matches]{'sort'} = $$sortby if $sortby;
if ($exportField) {

$filename = $$exportField;
if ($filename ne "") {

$filename = replace($filename, "/", "-");
} else {

$filename = "Unknown $exportField";
}
$matches[$#matches]{'file'} = $filename;

}
} else {

SQL database—61

print $text;
}
#import into a database?
if ($importDB) {

insertRow($importHandle, $dbTable, \%dbFields);
}

}
last if $limit && $matches >= $limit;

}
#commit insertions if we are importing into a database
$importHandle->commit;
if (%artists) {

@artists = keys %artists;
@artists = sort byArtistCount @artists;
foreach $artist (@artists) {

$artistCount = $artists{$artist};
print "$artist: $artistCount\n";

}
} elsif (@matches) {

@matches = sort byCustom @matches if $sortby;
#create a folder if necessary, and move into it
if ($exportField && $exportFolder) {

if (!-e $exportFolder) {
if (!mkdir($exportFolder)) {

print "Unable to create $exportFolder: $!\n";
exit;

}
}
if (!chdir($exportFolder)) {

print "Unable to move into $exportFolder: $!\n";
exit;

}
}
foreach $match (@matches) {

if ($exportField) {
$filename = $$match{'file'};
#open the file if we haven't already
if (!$files{$filename}) {

if (!open($files{$filename}, ">$filename")) {
print "Unable to open $filename: $!\n";
exit;

}
}
$filehandle = $files{$filename};
print $filehandle $$match{'text'};

} else {
print $$match{'text'};

}
}
#close all open files
foreach $filename (keys %files) {

$filehandle = $files{$filename};
close($filehandle);
utime($lastModified, time(), $filename);

}
}

} else {
help();

}
#describe how this script is used
sub help {

#if there is an error message, print it out separated from the rest
if (my($message) = shift) {

print "\n$message\n\n";
}
print "Syntax: show [options] [song files]\n";
print "\tSearch for some text in the song file. If no song file is specified\n";
print "\t'show' will expect it on standard input.\n";
print "\tA song file is a tab-delimited file with:\n";
print "\ttitle, duration, artist, album, year, rating, rip date, track position, genre\n";
print "\t--help: print this help text\n";

62—SQL database

print "\t--case: be sensitive to upper and lower case\n";
print "\t--reverse: filter out songs that contain the search text\n";
print "\t--limit x: limit to x results\n";
print "\t--format <$validFormats>: choose format for results\n";
print "\t--$validFields <searchtext>: search in the $validFields field\n";
print "\t--sort <$validFields>: sort by specified field\n";
print "\t--exact: the search text must match exactly\n";
print "\t--export <$validFields>: export to files named after the specified field\n";
print "\t--folder <foldername>: export files are created in the specified folder\n";
print "\t--keep-time: keep the input file's timestamp on any exported files\n";
print "\t--import <database name>: import data into a named database\n";
print "At least one of the $validFields search requests must be specified.\n";
exit;

}
sub byArtistCount {

return $artists{$b} <=> $artists{$a};
}
sub englishJoin {

my($punctuation) = shift;
my($conjunction) = shift;
my(@items) = @_;
my($joined, $finalItem);
if ($#items == -1) {

$joined = "";
} elsif ($#items == 0) {

$joined = $items[0];
} elsif ($#items == 1) {

$joined = "$items[0] $conjunction $items[1]";
} else {

$finalItem = pop(@items);
$joined = join($punctuation, @items) . "$punctuation$conjunction $finalItem";

}
return $joined;

}
sub match {

my($searchIn) = shift;
my($searchFor) = shift;
my($matched) = 0;
if ($sensitive) {

$matched = $searchIn =~ /$searchFor/;
} else {

$matched = $searchIn =~ /$searchFor/i;
}
return $matched;

}
sub byCustom {

if ($sensitive) {
return $$a{'sort'} cmp $$b{'sort'};

} else {
return lc($$a{'sort'}) cmp lc($$b{'sort'});

}
}
sub replace {

my($text, $from, $to) = (shift, shift, shift);

$text =~ s/$from/$to/g;
return $text;

}
#expects a handle to a database connection, a name for a table, and an associative
#array of field names and field types passed as a reference
sub createTable {

my($dbHandle) = shift;
my($tableName) = shift;
my($tableFields) = shift;
my(@fieldCreators, $createQuery, $queryHandle, $fieldType);
@tables = $importHandle->tables();
if (!grep(/^"$dbTable"$/, @tables)) {

#construct query to create table
foreach $fieldName (keys %$tableFields) {

$fieldType = $$tableFields{$fieldName};
$fieldCreators[$#fieldCreators+1] = "$fieldName $fieldType";

SQL database—63

}
$createQuery = "CREATE TABLE $tableName (" . join(", ", @fieldCreators) . ")";
#tell database to create the table
doQuery($dbHandle, $createQuery);

}
}
#expects a handle to a database connection, a name for a table, and an associative
#array of field names and field types passed as a reference
#also expects that the field names match a currently-existing scalar variable
sub insertRow {

my($dbHandle) = shift;
my($tableName) = shift;
my($tableFields) = shift;
my(@fieldNames, @fieldValues, $fieldNames, $fieldValues, $fieldValue);
my($insertQuery, $queryHandle);
#create the field list and value list
@fieldNames = keys %$tableFields;
foreach $fieldName (@fieldNames) {

$fieldValue = $$fieldName;
#set $fieldValue to an appropriate SQL value
if ($fieldValue eq "") {

$fieldValue = NULL;
} else {

$fieldValue = '$dbHandle->quote($$fieldname);
}
$fieldValues[$#fieldValues+1] = $fieldValue;

}
$fieldNames = join(", ", @fieldNames);
$fieldValues = join(", ", @fieldValues);
$insertQuery = "INSERT INTO $tableName ($fieldNames) VALUES ($fieldValues)";
#insert into the database
doQuery($dbHandle, $insertQuery);

}
sub doQuery {

my($dbHandle) = shift;
my($query) = shift;
if ($queryHandle = $dbHandle->prepare($query)) {

if (!$queryHandle->execute) {
print "Unable to execute $query: $!\n";

}
} else {

print "Unable to prepare $query: $!\n";
exit;

}
}

Web CGIs
One of the most common uses of Perl on databases is displaying the data in the database on the web.
Perl comes with a special module for use as a web page generator, called “CGI”. CGI stands for
Common Gateway Interface. It’s a way for web servers to pass data to programs such as Perl scripts.
The CGI module makes heavy use of objects and methods. You can find out more about Perl’s CGI
module by typing “perldoc CGI” from a Unix command line.

I’m going to assume that you’ve created the “love” database from the previous example, called
LoveSongs, and that you’ve put it somewhere accessible. You usually do not want to put your
databases inside your web site. For example, if your web site is in a folder called “public_html”, your
CGI will go in that folder but your database should be outside of it. Otherwise, people can
download your database directly, without having to go through your CGI.

Perl web scripts usually end in “.cgi”. Create a file called “music.cgi”:

#!/usr/bin/perl
#display data from a show-created SQLite music database, on the web

use CGI::Pretty;
use DBI;

$html = new CGI;

#start the web page
print $html->header;
print $html->start_html("Love Songs");

#print the top of the html
print $html->h1("Love Songs of the Seventies & Eighties");
print $html->p("Welcome to my web page of", $html->em("songs that mention love"), "in their
title.");

#finish the page
print $html->end_html;

I’m actually using CGI::Pretty, rather than CGI, because it is easier to debug your Perl scripts when
you can see the HTML it creates. The default for CGI is to put all of the text on the same line, for
one really huge line of HTML. CGI::Pretty puts your HTML on separate lines. With or without
CGI::Pretty, it works the same, so you can experiment with using each of them. Just change
CGI::Pretty to CGI and then back again.

We create a “new cgi” and assign it to $html. This will be an object that knows how to create
HTML code. It knows how to create a header, it knows how to create a paragraph, and it knows
how HTML pages end. Each of the HTML parts can take lists of other parts. So you can see that for
the “h1” part (level one header), we just send it some text. But for the following paragraph, one of
the pieces needs to be emphasized.

66—Web CGIs

You’ll still need to know HTML a bit when using the CGI module; each of the parts is the same
name as their HTML counterpart.

Once you have this script created and saved, don’t forget to make it executable by you:

chmod u+x music.cgi

And you’ll also need to make it executable by “other”. Web servers will need permission to read this
file in order to run it:

chmod o+x music.cgi

While you’re at it, you’ll need to make sure that the LoveSongs database is also accessible by “other”:

chmod o+r /path/to/LoveSongs

You will need a web site that can run CGI scripts. This web site’s server will also need the DBI
module and the DBD::SQLite module installed. (If it’s a server meant for web serving, it probably
does.)

Upload it, and then view the CGI. You should get something like:

So, we can write web pages, we need to open the database and display it. Add some defaults to the
top of the script, below the first comment:

@displayFields = ("song", "artist", "album", "year", "genre");
$dbFile = "/path/to/dbs/LoveSongs";

Below the paragraph and before the end of the page, add:

if ($dbHandle = DBI->connect("dbi:SQLite:dbname=$dbFile")) {
print $html->table(

$html->Tr($html->th(\@displayFields))
);

} else {
print $html->p($html->b("Problem opening database. Try again later: $!."));

}

Web CGIs—67

We’re opening the database just as we did before when we wanted to write to it. Then, we’re
printing out a table that contains one row; that row contains a series of header cells (“th”). Note that
we’re passing the list of fields as a reference. This is how $html->th() knows that each of these items
needs its own cell. If they were passed as a normal list, $html->th() would put them all in the same
cell, just as giving the paragraph multiple items put them all in the same paragraph.

Next step: display all of the rows. Replace the “$html->Tr(…)” line with:

$fields = join(", ", @displayFields);
$query = "SELECT $fields FROM music ORDER BY song";
if (@rows = getRows($dbHandle, $query)) {

print $html->table(
$html->Tr($html->th(\@displayFields), @rows)

);
} else {

print $html->p("Nothing found. Sorry.");
}

The query is going to look like “SELECT song, artist, album, year, genre FROM music ORDER BY
song”. We are going to pass that query to a subroutine called getRows.

If that subroutine returns something, we’ll print the table just as we did before, but with the rows
returned by getRows.

That subroutine will need to query the database and then go through each row that the database
returns and turn them into HTML table rows.

sub getRows {
my($db) = shift;
my($query) = shift;

my(@rows);
if ($queryHandle = $db->prepare($query)) {

if ($queryHandle->execute) {
while ($row = $queryHandle->fetch) {

$rows[$#rows+1] = $html->Tr($html->td($row));

68—Web CGIs

}
} else {

print $html->p("Unable to execute $query: $!");
}

} else {
print $html->p("Unable to prepare $query: $!");

}
return @rows;

}

The main difference between this and our other doQuery function is that, after executing the query
this function also loops through each row, using:

while ($row = $queryHandle->fetch) {
$rows[$#rows+1] = $html->Tr($html->td($row));

}

The fetch method on the query object gets the next row. More specifically, it gets a reference to a
simple array of the items in the next row. Since the CGI module’s HTML parts accept references as
things to add the part to individually, calling $html->td($row) is like calling $html->td(\@row) if we
had an @row list.

That’s it. The web page should now display a list of about 292 songs.

Reference

Boolean logic
In case you’ve forgotten it from high school, here is the table of and, or, and exclusive or:

Perl recognizes the following characters for use in if, while, or other such blocks for determining
whether and how often the block executes:

You can also use parentheses to force some logic to be interpreted before other logic. For example:

if ($isGod || ($isNietzsche && $godIsDead)) { … }

will act on that if block if $isGod is true, or if both $isNietzsche is true and $godIsDead is true.

Comparison operators
Perl has two basic types of comparisons: comparisons between text and comparisons between
numbers. Remember that Perl doesn’t care whether a variable is text or a number until you use it in
a manner that requires it to care.

First Value

True
True
False
False

Second Value

True
False
False
True

AND

True
False
False
False

OR

True
True
False
True

Character

&&
||
!

Meaning

AND
OR
NOT

Text Operator

eq
ne
lt
gt
lte
gte
cmp

Numeric Operator

==
!=
<
>
<=
>=
<=>

Meaning

are the two items equal?
are the two items unequal?
does the left item come before the right item?
does the left item come after the right item?
is the left item before or equal to the right item?
is the left item after or equal to the right item?
-1 if the left item comes first, +1 if the right item comes
first, and 0 if both items are the same

70—Reference

File tests
There are a number of very useful tests you can perform on files. Remember that you’ll usually want
to determine if the file exists first, especially for the tests that return a value such as a file size or age.

Tests can be combined by using the filename for the first test, and the underscore for subsequent
tests. For example, to test if a file exists and has been modified less than 24 hours ago:

if (-e $filepath && -M _ < 1) { … }

There are many more tests for more specialized purposes, but these should cover most of your needs.

Regular expressions
Remember that you can add an “i” to the end of a regular expression to make it ignore upper and
lower case.

For example, you might use /Dean ([A-Z]\.)?Martin/ to match Dean Martin, Dean M. Martin,
Dean Q. Martin, or Dean Z. Martin.

Use =~ to see if the item on the left matches the regular expression, and !~ to see if the item on the
left does not match the regular expression.

Test

-e
-r
-w
-x
-s
-f
-d
-M

Tests

the file exists
the file is readable by your script
the file is writable by your script
the file is executable by your script
the size of the file in bytes
the file is a plain file, not a directory or alias
the file is a directory
the time since the file was last modified, in days

Character

.
[characters]
[^characters]
?
+
*
(text)
|
^
$
\character

Meaning

a single character
a single character from a list or range of characters
a single character not from a list or range of characters
zero or one of the preceding piece of text
one or more of the preceding piece of text
zero or more of the preceding piece of text
group pieces of text for remembering later in $0 to $9 or for applying a ?, +, or *
choose between two or more options in a group of pieces
anchor the expression to the beginning of the line or text being searched
anchor the expression to the end of the line or text being searched
backquote the next character so that it means what it is rather than its meaning as
a regular expression.

Reference—71

SilverService
If you’re using Mac OS X, I can’t recommend SilverService strongly enough. You may be aware that
applications can provide services to service-aware software. They’ll show up in the “Services”
submenu of every service-aware application’s application menu and can act on that application’s
documents.

SilverService lets you put your scripts in that menu. Select text in a service-aware application (such as
Smultron or Safari), choose your script from the Services menu, and the selected text will be piped to
your script. Whatever your script prints out will replace your selected text. This is a great way to
merge your command-line scripts with the Mac OS X GUI.

You can download SilverService from http://www.rho.org.uk/software/silverservice/

Note that SilverService is currently (a) abandoned, and (b) PowerPC, so it requires Rosetta. But it is
open source, so someone may take it up again later. It works great up to at least Mac OS X 10.6
Snow Leopard.

More Information
The Perl web site at http://www.perl.org/ has documentation, tutorials, and links to several
wonderful resources. O’Reilly has several very useful books about Perl. “Learning Perl” and
“Programming Perl”. Get “Learning Perl” if you need to learn programming, and get “Programming
Perl” if you already know programming but want to learn programming in Perl.

If you’re familiar with Perl but need some solutions, the “Perl Cookbook” is very useful. I have a
review of it at http://www.hoboes.com/Mimsy/hacks/perl-cookbook/. If you look down towards the
bottom of that page you’ll also see one or two related Perl articles.

Finally, “The Perl Desktop Reference” is a great desktop—and pocket—reference to the Perl syntax
and language.

“The best book on programming for the layman is Alice in Wonderland; but
that’s because it’s the best book on anything for the layman.”

GNU Free Documentation License
Version 1.1, March 2000
Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place,
Suite 330, Boston, MA 02111-1307 USA Everyone is permitted to copy
and distribute verbatim copies of this license document, but changing it
is not allowed.

0. Preamble
The purpose of this License is to make a manual, textbook, or other
written document "free" in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying
it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work,
while not being considered responsible for modifications made by
others.
This License is a kind of "copyleft", which means that derivative works
of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.
We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it is
published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. Applicability and Definitions
This License applies to any manual or other work that contains a notice
placed by the copyright holder saying it can be distributed under the
terms of this License. The "Document", below, refers to any such
manual or work. Any member of the public is a licensee, and is
addressed as "you".

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.
A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (For example, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.
The "Invariant Sections" are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says
that the Document is released under this License.
The "Cover Texts" are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License.
A "Transparent" copy of the Document means a machine-readable
copy, represented in a format whose specification is available to the
general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose
markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that is not
"Transparent" is called "Opaque".
Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or
XML using a publicly available DTD, and standard-conforming simple
HTML designed for human modification. Opaque formats include
PostScript, PDF, proprietary formats that can be read and edited only

74—GNU free documentation license

by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-
generated HTML produced by some word processors for output
purposes only.
The "Title Page" means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the
most prominent appearance of the work's title, preceding the beginning
of the body of the text.

2. Verbatim Copying
You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies to
the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying
of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. Copying in Quantity
If you publish printed copies of the Document numbering more than
100, and the Document's license notice requires Cover Texts, you must
enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque
copy a publicly-accessible computer-network location containing a
complete Transparent copy of the Document, free of added material,
which the general network-using public has access to download
anonymously at no charge using public-standard network protocols. If
you use the latter option, you must take reasonably prudent steps, when
you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the
public.
It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the
Document.

4. Modifications
You may copy and distribute a Modified Version of the Document
under the conditions of sections 2 and 3 above, provided that you
release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever
possesses a copy of it. In addition, you must do these things in the
Modified Version:

1. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions

(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

2. List on the Title Page, as authors, one or more persons or
entities responsible for authorship of the modifications in the
Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has
less than five).

3. State on the Title page the name of the publisher of the
Modified Version, as the publisher.

4. Preserve all the copyright notices of the Document.

5. Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.

6. Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under
the terms of this License, in the form shown in the Addendum
below.

7. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document's license
notice.

8. Include an unaltered copy of this License.

9. Preserve the section entitled "History", and its title, and add to
it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section entitled "History" in the Document, create
one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous
sentence.

10. Preserve the network location, if any, given in the Document
for public access to a Transparent copy of the Document, and
likewise the network locations given in the Document for
previous versions it was based on. These may be placed in the
"History" section. You may omit a network location for a work
that was published at least four years before the Document
itself, or if the original publisher of the version it refers to gives
permission.

11. In any section entitled "Acknowledgements" or "Dedications",
preserve the section's title, and preserve in the section all the
substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

12. Preserve all the Invariant Sections of the Document, unaltered
in their text and in their titles. Section numbers or the
equivalent are not considered part of the section titles.

13.Delete any section entitled "Endorsements". Such a section may
not be included in the Modified Version.

14.Do not retitle any existing section as "Endorsements" or to
conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or
all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version's license notice. These titles
must be distinct from any other section titles.
You may add a section entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties—for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a
standard.
You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you

GNU free documentation license—75

may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. Combining Documents
You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license
notice.
The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of
that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the
license notice of the combined work.
In the combination, you must combine any sections entitled "History"
in the various original documents, forming one section entitled
"History"; likewise combine any sections entitled "Acknowledgements",
and any sections entitled "Dedications". You must delete all sections
entitled "Endorsements."

6. Collections of Documents
You may make a collection consisting of the Document and other
documents released under this License, and replace the individual copies
of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other
respects.
You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert a copy
of this License into the extracted document, and follow this License in
all other respects regarding verbatim copying of that document.

7. Aggregation with Independent Works
A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, does not as a whole count as a Modified Version
of the Document, provided no compilation copyright is claimed for the
compilation. Such a compilation is called an "aggregate", and this

License does not apply to the other self-contained works thus compiled
with the Document, on account of their being thus compiled, if they are
not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one quarter of the
entire aggregate, the Document's Cover Texts may be placed on covers
that surround only the Document within the aggregate. Otherwise they
must appear on covers around the whole aggregate.

8. Translation
Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a
disagreement between the translation and the original English version of
this License, the original English version will prevail.

9. Termination
You may not copy, modify, sublicense, or distribute the Document
except as expressly provided for under this License. Any other attempt to
copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full
compliance.

10. Future Revisions of this License
The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns. See http://www.gnu.org/
copyleft/.
Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of
any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

Perl
The Perl scripting language is ideal for creating cron scripts that deal with text, or that exchange data
between two locations. It can easily filter text files, and also coordinate with other scripts and other
commands on the Unix command line.

If you’re using Mac OS X or Linux, you have Perl already installed. Learn the basics of this venerable
and powerful scripting language. Automate your routine command-line tasks, and save time for
writing more Perl scripts!

	Introduction
	What is Perl?
	The web site
	What do you need?
	Sample Data
	Text Editor
	Terminal or Shell

	The basic Perl filter
	What is it doing?
	Indentation
	Basic regular expressions
	Splitting and printing
	Comments

	Smarter scripts
	Capturing errors
	Help!
	Command-line switches
	Case sensitivity
	Boolean logic
	Exiting loops ahead of time
	Multiple options
	Script confusion
	The current script

	Arrays and functions
	Sort numerically
	A smarter join
	Format conversions
	The current script

	Custom search
	New fields
	Custom sort
	Backquoting special characters
	The current script

	Creating files
	Creating folders
	Replacing text
	Try to break it
	Timestamps
	The current script

	SQL database
	Installing from CPAN
	Using SQLite
	Creating tables
	Inserting data
	The final script

	Web CGIs
	Reference
	Boolean logic
	Comparison operators
	File tests
	Regular expressions
	SilverService

	More Information
	GNU Free Documentation License

