
		
	
	
		
		
		
			
				

	Mimsy Were the Borogoves

	
		Hacks: Articles about programming in Python, Perl, Swift, BASIC, and whatever else I happen to feel like hacking at.

	

			
		
	

	
	
		

			
					
	
	
	

				

				
	Creating searchable PDFs in Ventura

	
		Jerry Stratton, June 14, 2023

	

				

	
	

	
		An example pre-Ventura.

	
	
		The same page post-Ventura.

		
	

I’ve updated my searchablePDF (Zip file, 8.9 KB) script with a workaround for new behavior in Ventura. As you can see from my archive of old promotional cookbook pamphlets I’ve been using it extensively—and I have a lot more to come! Reading these old books and trying out some of their recipes has been ridiculously fun, and even occasionally tasty.

Recently, a friend of mine gave me an old recipe pamphlet in very bad shape; but it isn’t currently available on any of the online archives, so I decided to scan it anyway, more for historical purposes than as a useful cookbook. This was the first archival scan I did since upgrading to Ventura, and when I was finished and created the PDF, it was practically unreadable.

It was also a lot smaller than the source images. All of the previous PDFs had very predictable file sizes. When running this script under Monterey, all I had to do was sum up all of the source images (easily done by just doing Get Info on the folder they’re in) and that was the size of the resultant PDF file.

In retrospect, it sounds like in Monterey, where I originally wrote the script, PDFKit was re-using the original image data. I always scan at somewhere from 300 to 600 dpi. In Ventura it seems to be regenerating the image data and using the lower resolution of PDFs to do so. PDFs use 72 dots per inch; but PDFKit in Monterey did not downgrade the actual images to 72 dots per inch. Ventura does.

No problem, I thought, I’ll just increase the image’s size before creating the PDFPage. This worked—to improve the image’s quality. But the PDF opened in Preview as if it were bigger than the screen! Sure enough, Preview reported the document as being some immense number of inches wide and tall.

While flailing around looking for a solution, I noticed that if I didn’t bother trying to normalize the images to always be the correct ratio (i.e., for a 4x6 book, the ratio should be ⅔) but just assigned the 4x6 pageSize to image.size it both maintained the image quality and it created PDFs of the correct size in inches.

Because the image wasn’t normalized to the PDF’s size, however, there was weird white space either vertically or horizontally, depending on whether the original image was slightly too wide or slightly too tall.

But why not assign the new page size to the new, normalized NSImage? Unlike doing so to the original image, this actually adjusted the quality of the image, identical in both file size and image quality to just making the NSImage using that page size to begin with.

	
	

	
		One of the pamphlets I’ve scanned and then converted to PDF using this script.

	
	

Giving the normalized NSImage the page’s size after creation created very low quality images. Giving the normalized NSImage a doubled or quadrupled page size after creation improved the quality but also generated zoomed PDFs. This at least meant that the original image’s quality wasn’t being thrown out by the new NSImage. It just wasn’t being used by PDFKit.

Because altering .size directly worked, sort of, with the original NSImage, I experimented with creating file representations of the new, normalized NSImage. At the very worst, I assumed I could literally write out the normalized image at high quality, re-read it as an NSImage, and then adjust its .size. That turned out not to be necessary, however. All that’s required is requesting a representation at the higher resolution; once that representation is created, PDFKit appears to use it rather than generating a very low resolution one.

	
		[toggle code]

	
		//a data representation needs to be generated, or PDFKit under Ventura will generate a very low quality image
	//at 72 pixels per inch instead of using the original image as it did under Monterey.
	
		func toPageSize(image: NSImage, pageSize: NSSize, identifier: String) -> NSImage {
			
				guard let imageData = image.tiffRepresentation else {
					print("Trouble adding representation to image", identifier)
	exit(0)

			
	}
	
				guard let bitmapVersion = NSBitmapImageRep(data: imageData) else {
					print("Trouble getting bitmap of image representation for image", identifier)
	exit(0)

			
	}
	
				guard let imageData = bitmapVersion.representation(using: NSBitmapImageRep.FileType.jpeg, properties:[.compressionFactor : compression]) else {
					print("Trouble turning bitmap into a jpeg for image", identifier)
	exit(0)

			
	}
	
				guard let pagedImage = NSImage(data:imageData) else {
					print("Trouble creating image from data for image", identifier)
	exit(0)

			
	}
	pagedImage.size = pageSize
	return pagedImage

	
	}

This generates a JPEG, it then rereads the JPEG data into an NSImage. After creation, it assigns the correct PDF dimensions to the new JPEG.

Because the default JPEG compression is not the same as whatever compression I used when scanning the images, this still generates files of a different size, but it’s a lot closer, and the quality of the PDF’s pages are back up to the quality of the original images. If you look in the real code, you’ll see that I set a compression factor of (as I write this) 0.537 (the value can range from 0.0 to 1.0). That seems to generate PDFs that approximate the sum of the constituent images. I’ll probably turn that into a command-line option if I end up needing different factors but it seems to work well for now.

	Download Zip file (8.9 KB)
	
	

That’s the major change to the script for Ventura. It’s very much a workaround. I’d rather keep the original image intact, as in Monterey, than re-compress it as this solution does. If you know how to retain the pre-Ventura behavior of NSImage and PDFKit, consider answering this question on StackOverflow.

I’ve also added one new feature, for scanning in very low-quality pamphlets. There is now a --missing option to insert a blank page or multiple blank pages into the document at a specific page, with the text “Missing page xx”.

Besides being mouse-eaten, the low quality pamphlet that got me started on this is missing the middle sheet, which is the middle four pages. So, when generating the PDF from my scans of that pamphlet, I include --missing 46 4 and it adds four blank pages after page 46.

It’s adding the text to the NSImage and not to the PDFPage, something I should probably change. Or possibly not; it lets me use the subroutines for altering the images that I know already work. In order to get around Ventura’s resolution issue, I create the blank image at a higher resolution (currently hardcoded at eight times the page’s dimensions), do the above conversion, and then assign the real page size to it.

There’s a still a minor problem that I haven’t tracked down. Most times I run the script I get a notice that “CoreGraphics PDF has logged an error. Set environment variable "CGPDFVERBOSE" to learn more.”. If I set the environment variable, all I get is a series of warnings, all the same: “Invalid image orientation, assuming 1.”

Since I don’t change the orientation of any of the images, I’m guessing that the invalid orientation value is in the original. “Assuming 1” appears to be the correct thing to do, since there are no incorrectly oriented pages in the PDF.

You can use setenv("CG_PDF_VERBOSE", "1", 1) to view the more detailed errors yourself if you wish—assuming you even see them at all. If, as I suspect, the error is the result of the image editor I’m using, you may not see that error at all.

				
	
	
		
			In response to Create searchable PDFs in Swift: This Swift script will take a series of image scans, OCR them, and turn them into a PDF file with a simple table of contents and searchable content—with the original images as the visually readable content.

		
		
	

				

				

				
				
	
	
		
			
				
					
					
						
							
						
								Baker’s Dozen Coconut Oatmeal Cookies
	
		
			
		
		The Baker’s Dozen coconut oatmeal cookies, compared to a very similar recipe from the Fruitport, Michigan bicentennial cookbook.
		
	
		
	
	How can I scale an image while retaining quality when creating a PDF in Swift on macOS? at Stack Overflow
	
		
			
		
		“I have a command-line Swift script that takes a series of images of close to the same pixel dimensions and creates a PDF from them… I upgraded to Ventura last week, and while the scaling was correct the image quality was drastically lower.”
		
	
		
	
	Promotional Cookbook Archive
	
		
			
		
		I’ve managed to acquire several old promotional pamphlets and cookbooks that don’t appear to be available elsewhere on the net. I’m making them available here.
		
	
		
	
	searchablePDF (Zip file, 8.9 KB)
	
		
			
		
		A Swift script to take a series of images, sort them, and create a PDF where each image is a page with the OCRed text behind the page’s image.
		
	
		
	

						

					
				
				

	
		
			
				
					
							
								More NSImage

									ISBN (128) Barcode generator for macOS
	
		
			
		
		Building on the QR code generator, this script uses CIFilter to generate a Code 128 barcode for encoding ISBNs on book covers.
		
	
		
	
	Caption this! Add captions to image files
	
		
			
		
		Need a quick caption for an image? This command-line script uses Swift to tack a caption above, below, or right on top of, any image macOS understands.
		
	
		
	
	Avoiding lockFocus when drawing images in Swift on macOS
	
		
			
		
		Apple’s recommendation is to avoid lockFocus if you’re not creating images directly for the screen. Here are some examples from my own Swift scripts. You can use this to draw text into an image, and to resize images.
		
	
		
	

							

					
				
			
		
			
				
					
							
								More PDF

									Create searchable PDFs in Swift
	
		
			
		
		This Swift script will take a series of image scans, OCR them, and turn them into a PDF file with a simple table of contents and searchable content—with the original images as the visually readable content.
		
	
		
	
	Quality compressed PDFs in Mac OS X Lion
	
		
			
		
		The instructions for creating a “reduce PDF file size” filter in Lion are the same as for earlier versions of Mac OS X—except that for some reason ColorSync saves the filter in the wrong place (or, I guess, Preview is looking for them in the wrong place).
		
	
		
	
	Calculating true three-fold PDF in Python
	
		
			
		
		Calculating a true three-fold PDF requires determining exactly where the folds should occur.
		
	
		
	
	Adding links to PDF in Python
	
		
			
		
		It is very easy to add links to PDF documents using reportlab or platypus in Python.
		
	
		
	
	Multiple column PDF generation in Python
	
		
			
		
		You can use ReportLab’s Platypus to generate multi-column PDFs in Snakelets, Django, or any Python app.
		
	
		
	
	Four more pages with the topic PDF, and other related pages

							

					
				
			
		
			
				
					
							
								More PDFKit

									Create searchable PDFs in Swift
	
		
			
		
		This Swift script will take a series of image scans, OCR them, and turn them into a PDF file with a simple table of contents and searchable content—with the original images as the visually readable content.
		
	
		
	

							

					
				
			
		
			
				
					
							
								More Swift

									Create searchable PDFs in Swift
	
		
			
		
		This Swift script will take a series of image scans, OCR them, and turn them into a PDF file with a simple table of contents and searchable content—with the original images as the visually readable content.
		
	
		
	
	ISBN (128) Barcode generator for macOS
	
		
			
		
		Building on the QR code generator, this script uses CIFilter to generate a Code 128 barcode for encoding ISBNs on book covers.
		
	
		
	
	Place a QR code over an image in macOS
	
		
			
		
		It's simple in Swift to create a QR code and place it over an image from your Photos or from any file on your computer.
		
	
		
	
	Caption this! Add captions to image files
	
		
			
		
		Need a quick caption for an image? This command-line script uses Swift to tack a caption above, below, or right on top of, any image macOS understands.
		
	
		
	
	Catalina vs. Mojave for Scripters
	
		
			
		
		More detail about the issues I ran into updating the scripts from 42 Astounding Scripts for Catalina.
		
	
		
	
	Three more pages with the topic Swift, and other related pages

							

					
				
			
		
	

			

		

	

	

				
			

		
		
	
		
			
	
		

	
	
	
		
			
				
					Editorials

						Trump January 6
	Illinois Nazis
	Soldered RAM
	Death of Title IX
	100% Traffic Rule

				
			
		
			
				
					Books, Movies, & Music

						V faces of V: I
	Everyone is Gonzo
	V faces of V
	Christmas hymns

				
			
		
			
				
					Technology & Hacks

						Frigidaire, 1928
	Electric Hollyfeld
	Useful electric cars
	macOS parent mailboxes

				
			
		
			
				
					Food

						Catching up with Eddie Doucette
	Eggnog Breakfast
	2023 in food
	1950 Recipe Finale

				
			
		
			
				
					42 Astounding Scripts

						A Thrill of Hope
	Padmath in Ventura
	macOS parent mailboxes
	JXA vs. AppleScript

				
			
		
			
				
					Walkerville Reader

						Omar decries “White Hate”
	Occupy Democrats school choice
	Experts Warn We Have Only 12 Years Left

				
			
		
			
				
					Biblyon Broadsheet

						Wargaming 1969
	Cult of Gygax
	Wondrous Weapons

				
			
		
	

	

		

		
			
				
					Blogroll

						According To Hoyt
	Ace of Spades HQ
	John Hayward
	Sub-Etha Software
	Sultan Knish

				
					Keep in touch

						Mimsy@Facebook
	Mimsy@YouTube
	Mimsy@RSS
	Hacks@RSS

				
			

		
		
			
About Mimsy

	Archive
	Next Senate election
	Jerry Stratton

	
		
			
			
			
		

	

		
	

		
	
		

	
	
		
	Comments?

		
			##

				Thanks for the script! But it seems not actually adding the text layer? At least on my Ventura 13.5.1.
I'm able to see the OCR'd layer in Apple Preview, but not in PDF Expert. However, it seems Apple Preview OCR's it on the fly. I tried to comment out the line 191 "scannedText.drawScan(text:text.string, targetBox:textBox)" and the result is the same: Apple Preview recognizes the page on the fly, but PDF Expert says the page is not OCR'd.
Still, I see your sample PDFs (e.g. Chiquita Banana’s Recipe Book (PDF File, 9.9 MB)) have the actual OCR layer (in PDF Expert).

Am I using it wrong way? Or did it break with the later MacOS releases?

				
					 Grisha
					in New York, NY
					at 1:30 a.m. September 6th, 2023

					TiraT
				

		
	
			##

				Grisha, I hope not! I’m using the latest non-beta of 13.3.1, and it still acts as normal.

One way to test would be to use the --text option, to save only the text, and not the images.

				
					 Jerry
					in Texas
					at 10:51 a.m. September 6th, 2023

					yFmrE
				

		
	
			##

				Strange, it feels like those versions are not supposed to be that much different.

I created a small test for reproducing it, and placed it on Dropbox: https:/ /www.dropbox.com/ home/Public/ searchable-pdf-test (please, remove the spaces in the URL: this form complains "There is an awfully long word in your comment" if I put the full URL without spaces)

I have a simple image "simple-text.png" there.
I run: ./searchablePDF simple-text.png --save simple-text.pdf

Then I wrote a simple script "getpdftext.swift" that extracts the text from the first page.
I run: swift getpdftext.swift simple-text.pdf
and it prints empty string for "simple-text.pdf". (on your file "Chiquita Recipe Book.pdf" it shows some text)
I included the console output in the "test.output.txt" file.

I did try the --text option, and it works fine (simple-text.text.pdf file), but it doesn't include the textual information besides the text as an image.

It just feels like it's not including the textual information from NSImage to PDFPage. Possibly, it is related to your comment in this post: "It’s adding the text to the NSImage and not to the PDFPage, something I should probably change. Or possibly not; it lets me use the subroutines for altering the images that I know already work." Possibly, it broke between 13.3.1 and 13.5.1?
But what would adding the text directly to PDFPage look like? I didn't find any functions in PDFPage for adding a text layer, except adding annotations, but those are different than the searchable layer.

				
					 Grisha
					in New York, NY
					at 7:51 p.m. September 6th, 2023

					UPpy7
				

		
	
			##

				I will take a closer look at your files later. As for adding text to the pdf instead of to the NSImage, I added that note because it seems like it ought to be both possible and better, but I’ve done no research into how or even whether that’s possible. So far all of the pdf creation I’ve done where I create pdf documents from the ground up have been in Python.

Saving an NSImage as a PDF has not in the past converted the text to an image. I use the same technique in Caption this! Add captions to image files. If the NSImage is saved as pdf it retains the text.

If this behavior is about to change that’s going to suck.

				
					 Jerry
					in Texas, USA
					at 4:26 p.m. September 9th, 2023

					XPwsk
				

		
	
			##

				The URL to your Dropbox sample file is a personal URL. You will need to get a url that can be shared. (Note that you can paste it into the url field on the comment form rather than add spaces to it so that it wraps well.)

				
					 Jerry
					in Texas, USA
					at 3:13 a.m. September 10th, 2023

					XPwsk
				

		
	
			##

				Sorry about the broken link! It seems I can only share an archive on dropbox – I put the link in web page URL field, since it won't let me past it in comment.

I learned a lot about Quartz 2D in the past few days and confirmed rewriting from drawing text on NSImage to drawing using Quartz 2D routines resolves the issue (creating PDF context with CGContext, drawing text with Core Text CTFrameDraw, etc); unfortunately, those are a low level APIs that are harder to use (it seems). Good thing – there is the "CTFramesetter Suggest FrameSize With Constraints" function (I added spaces to avoid the form to complain) that picks the proper font size, so there is no need in binary search of font size. But I still wasn't able to properly aligned the text in the recognized boxes.

				
					 Grisha
					in New York, NY
					at 10:46 p.m. September 11th, 2023

					NKebw
				

		
	
			##

				Thanks for that. I haven’t had a chance to take a serious look at your examples, but I appreciate them. I have verified that Ventura has at some point stopped retaining the text when creating PDFs, and just making text-like images.

The same thing has happened in the caption script.

CTFramesetter also sounds interesting.

				
					 Jerry
					in Texas, USA
					at 12:35 a.m. November 16th, 2023

					yFmrE
				

		

	Your comment	
	Your name	
	Your email	
	Your web page	
	Your location	
		

Your email, URL, and location are optional—but I won’t be able to contact you if you don’t leave a working email. Your email does not get displayed, your URL and location do. Your name is required but may vary as the needs of the day demand, or you can just use the anonymous Hark Thrice name. You can use the following tags: , <a>, <blockquote>. Use them wisely and post intelligently. Comments may take some time to approve, especially if I’m stuck in a Mexican jail.
	If you have private comments, or questions about this page, please, leave a message on the Negative Space Comments Page.

		
			Lost?

			If you’re looking for something here, use the search box in the navigation to limit your search to this part of the site, or use the Negative Space search page.

		

		
			Jerry

			
				
	

	
		That the said Constitution shall never be construed to authorize Congress to infringe the just liberty of the press or the rights of conscience; or to prevent the people of the United states who are peaceable citizens from keeping their own arms… — Samuel Adams

	

			

		
	

	
		Contents of Negative Space™ as a whole Copyright © 1994-2024 Jerry Stratton. Individual copyrights remain held by their respective authors unless they specify otherwise. Site titles, such as Negative Space, Strange Bedfellows, Biblyon Broadsheet, Highland Games, and FireBlade Coffeehouse are trademarks of Jerry Stratton.

		Code and code snippets, to the extent that they are copyrightable, may be re-distributed under the terms of the GNU General Public License 3.

		Creating searchable PDFs in Ventura last modified May 9th, 2023.

	

	

	

	